

DORCHESTER DRINKING WATER SYSTEM

2022 ANNUAL REPORT

ONTARIO REGULATION 170/03
Part III Form 2
Section 11

28 FEBRUARY 2023

ANNUAL REPORT - DORCHESTER DWS

Drinking-Water System Name:
Drinking-Water System Name:
Drinking-Water System Owner:
Drinking-Water System Category:
Drinking-Water System Owner:
Drinking-Water System Category:
Drinking-Water System Cat

For Large Municipal Residential Water Systems

Does your Drinking-Water System serve more than 10,000 people?

Yes [] No [X]

Is your annual report available to the public at no charge on a web site on the Internet? Yes [X] No []

Location where Summary Report required under O. Reg. 170/03 Schedule 22 will be available for inspection.

• Available by calling Thames Centre water department at (519) 268-7490 or on Thames Centre website at www.thamescentre.on.ca or at the municipal offices at 4305 Hamilton Road, Dorchester, ON NOL 1G3

List all Drinking-Water Systems (if any), which receive all of their drinking water from your system:

Drinking Water System Name	Drinking Water System Number
None	N/A

Indicate how you notified system users that your annual report is available, and is free of charge.

- [X] Public access/notice via the web
- [X] Public access/notice via Government Office
- [X] Public access/notice via Public Request
- [X] Public access/notice via a Public Library

Describe your Drinking-Water System

The Dorchester Drinking Water System consists of 9 (nine) groundwater wells. The raw water from the production wells passes through a treatment system consisting of clear-wells, a chemical feed system, filtration system, ultraviolet disinfection, storage reservoirs, and high lift pumps. Operation of the treatment system is controlled based upon the liquid level condition within the elevated water storage tank in the village of Dorchester. The SCADA system indicates to the water treatment facility PLC when treated water is required to be pumped into the distribution system. During periods of low demand, the treatment system remains in the ready mode. The distribution system consists of approximately 46.76 km of water main contained within the urban boundaries of the village of Dorchester.

List all water treatment chemicals used over this reporting period

sodium hypochlorite

Ontario Drinking-Water Systems Regulation O. Reg. 170/03

Were any significant expenses incurred to?

[] Install required equipment

[X] Repair required equipment

[X] Replace required equipment

Please provide a brief description and a breakdown of monetary expenses incurred

- repair baffle walls inside Dorchester WTF Reservoir #2 = \$18,339.90
- Dorchester Well exploration program = \$137,230.36
- Production Well 3PW-2B and 3PW-7 rehabilitation = \$30,255.75

Provide details on the notices submitted in accordance with subsection 18(1) of the Safe Drinking-Water Act or section 16-4 of Schedule 16 of O.Reg.170/03 and reported to Spills Action Centre

Adverse Incident Date	Parameter	Corrective Action Taken	Adverse Water Quality Indicator # (AWQI)	Sample Result(s)	Maximum Allowable Concentration (MAC)
2022 02 15	Haloacetic Acids (HAAs)	report to MECP / MLHU	157950	80.1 µg/L RAA	RAA of <80 µg/L
2022 05 16	Haloacetic Acids (HAAs)	report to MECP / MLHU	159869	82.4 µg/L RAA	RAA of <80 µg/L
2022 08 16	Haloacetic Acids (HAAs)	report to MECP / MLHU	159870	82.6 µg/L RAA	RAA of <80 µg/L
2022 09 22	Total Coliform (TC)	report to MECP / MLHU and resample	160107	1 cfu/100 mL	0 cfu/100 mL
2022 09 24	Total Coliform (TC)	report to MECP / MLHU and resample	160121	2 cfu/100 mL	0 cfu/100 mL
2022 11 15	Haloacetic Acids (HAAs)	report to MECP / MLHU	160813	84.8 µg/L RAA	RAA of <80 µg/L

Microbiological testing done under the Schedule 10, 11 or 12 of Regulation 170/03, during this reporting period.

Sample Source	Number of Samples	Range of E.Coli Results (min #)-(max #)	Range of Total Coliform Results (min #)-(max #)	Number of HPC Samples	Range of HPC Results (min #)-(max #)
Raw Water	368	0 – 0	0 – 6	Not required	Not required
Treated Water	52	0 - 0	0 - 0	52	<10 - 80
Distribution Water	231	0 - 0	0 - 2	87	<10 - NDOGHPC

^{*}NDOGHPC = No Data Overgrown With Heterotrophic Plate Count

Operational testing done under Schedule 7, 8 or 9 of Regulation 170/03 during the period covered by this Annual Report.

Sample Analysis / Sample Source	Number of Samples	Range of Results (min #)-(max #)	Average Level recorded
Turbidity / Well 2PW-1 - raw water (RW)	12	0.42 - 4.64	1.20
Turbidity / Well 3PW-1 - raw water (RW))	12	0.23 - 0.53	0.38
Turbidity / Well 3PW-2B - raw water (RW))	11	0.25 – 0.85	0.54
Turbidity / Well 3PW-3 - raw water (RW))	12	0.29 - 0.64	0.43
Turbidity / Well 3PW-4A - raw water (RW))	12	0.32 – 0.85	0.51
Turbidity / Well 3PW-5 - raw water (RW))	12	0.22 – 0.79	0.44
Turbidity / Well 3PW-6 - raw water (RW))	12	0.43 – 0.94	0.72
Turbidity / Well 3PW-7 - raw water (RW))	12	0.21 – 0.77	0.46
Turbidity / Well 3PW-8 - raw water (RW))	12	0.36 – 0.74	0.56
Turbidity / Storage Reservoirs - treated water (TW)	525,408	0.00 – 10.19 ntu	0.06 ntu
Chlorine (free) / Storage Reservoirs – treated water (TW)	525,408	0.00 – 5.00 mg/L	1.55 mg/L
Fluoride (if the DWS provides fluoridation) / Storage Reservoirs – treated water (TW)	Fluoride is not added to this system	Not required	Not required
Chlorine (free) / Hamilton Road – Distribution water (DW)	365	0.34 – 1.86 mg/L	1.18 mg/L

Turbidity levels recorded below 0.03 ntu and above 0.44 ntu were instantaneous results directly caused by composite analyzer failure or maintenance activities and are not indicative of actual water system levels. Chlorine levels recorded in the storage reservoirs below 0.98 mg/L or above 2.60 mg/L were instantaneous results directly caused by composite analyzer or chemical dosing pump maintenance activities and are not indicative of actual water system levels.

Hardness

This is an aesthetic parameter that may affect the appearance of the water but is not related to health. Well water commonly has high levels of hardness and other minerals from being in contact with underground rock formations. Many households have water softeners to help reduce white calcium deposits and improve the efficiency of soaps. This information is included here to help set the water softener at the level recommended by the manufacturer. The most recent Hardness (CaCO3) sample (February 15th, 2022) returned with a result of 288 mg/L (equivalent to 16.84 grains).

Summary of additional testing and sampling carried out in accordance with the requirement of an approval, order or other legal instrument.

Ontario Drinking-Water Systems Regulation O. Reg. 170/03

Date of legal instrument issued	Parameter	Date Sampled	Result	Unit of Measure
Dorchester Drinking Water System MDWL Issue Number:5 Schedule C, table 5 (2020 11 23)	Trihalomethanes THM	monthly	94.83 (running annual average)	μg/L

Summary of INORGANIC parameters tested during this reporting period or the most recent

Parameter	Sample Date	Result Value	Unit of Measure	Exceedance
Antimony	15 Feb 2022	0.60 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Arsenic	15 Feb 2022	0.4	μg/L	no
Barium	15 Feb 2022	85.7	μg/L	no
Boron	15 Feb 2022	15	μg/L	no
Cadmium	15 Feb 2022	0.003 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Chromium	15 Feb 2022	0.20	μg/L	no
*Lead	see summary below			
Mercury	15 Feb 2022	0.01 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Selenium	15 Feb 2022	0.26	μg/L	no
Sodium (every 5 years)	14 Feb 2020	28.2	mg/L	yes
Uranium	15 Feb 2022	0.821	μg/L	no
Fluoride (every 5 years)	15 Feb 2022	0.14	mg/L	no
	15 Feb 2022	0.003 <mdl< td=""><td>mg/L</td><td>no</td></mdl<>	mg/L	no
Nitrite	16 May 2022	0.003 <mdl< td=""><td>mg/L</td><td>no</td></mdl<>	mg/L	no
VILLILE	16 Aug 2022	0.003 <mdl< td=""><td>mg/L</td><td>no</td></mdl<>	mg/L	no
	15 Nov 2022	0.003 <mdl< td=""><td>mg/L</td><td>no</td></mdl<>	mg/L	no
	15 Feb 2022	1.40	mg/L	no
Nitrato	16 May 2022	1.31	mg/L	no
Nitrate	16 Aug 2022	1.26	mg/L	no
	15 Nov 2022	1.07	mg/L	no

Summary of LEAD testing under Schedule 15.1 during this reporting period – Summer: (June 15/2022 – October 15/2022) Winter: (December 15/2022 – April 15/2023)

Sampling	Residential	Non-Residential	Distribution	Any Change in	Distribution
Period	Samples LEAD range of results (µg/L)	Samples LEAD range of results (µg/L)	System Samples LEAD range of results (µg/L)	Water Chemistry? (ie. variance in Alkalinity sample results	System Samples ALKALINITY range of results (mg/L)
				-	
	acceptable level <10 µg/L	acceptable level <10 µg/L	acceptable level <10 µg/L		acceptable level 30-500mg/L
Summer	•	•	•	no	•

N/R = not required - water system qualified for MECP Reduced Sampling (O.Reg170/03 schedule 15.1-5)

1 The winter sample taken on December 15/2022 returned a result 175 mg/L which was historically lower than previous samples. A re-sample on January 16/2023 at the same location returned a result of 248 mg/L which aligned with previous samples.

Summary of ORGANIC parameters sampled during this reporting period or the most recent

sample results (required sampling frequency = every 12 months)

Parameter	Sample Date	Result Value	Unit of Measure	Exceedance
Alachlor	15 Feb 2022	0.020 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Atrazine + N-dealkylated metobolites	15 Feb 2022	0.010 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Azinphos-methyl	15 Feb 2022	0.050 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Benzene	15 Feb 2022	0.320 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Benzo(a)pyrene	15 Feb 2022	0.004 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
Bromoxynil	15 Feb 2022	0.330 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
Carbaryl	15 Feb 2022	0.050 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Carbofuran	15 Feb 2022	0.010 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
Carbon Tetrachloride	15 Feb 2022	0.170 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Chlorpyrifos	15 Feb 2022	0.020 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Diazinon	15 Feb 2022	0.020 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
Dicamba	15 Feb 2022	0.200 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
1,2-Dichlorobenzene	15 Feb 2022	0.410 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
1,4-Dichlorobenzene	15 Feb 2022	0.360 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
1,2-Dichloroethane	15 Feb 2022	0.350 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
I,1-Dichloroethylene vinylidene chloride)	15 Feb 2022	0.330 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Dichloromethane	15 Feb 2022	0.350 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
2-4 Dichlorophenol	15 Feb 2022	0.150 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
2,4-Dichlorophenoxy acetic acid (2,4-D)	15 Feb 2022	0.190 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Diclofop-methyl	15 Feb 2022	0.400 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Dimethoate	15 Feb 2022	0.060 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Diquat	15 Feb 2022	1.000 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Diuron	15 Feb 2022	0.030 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Glyphosate	15 Feb 2022	1.000 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Malathion	15 Feb 2022	0.020 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
	15 Feb 2022		1 0	
HAA (running annual average)	16 May 2022 16 Aug 2022	84.8	μg/L	yes
	15 Nov 2022			
Metolachlor	15 Feb 2022	0.010 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Metribuzin	15 Feb 2022	0.020 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
Monochlorobenzene	15 Feb 2022	0.300 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
Paraquat	15 Feb 2022	1.000 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
Pentachlorophenol	15 Feb 2022	0.150 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
Phorate	15 Feb 2022	0.010 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
Picloram	15 Feb 2022	1.000 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no
Polychlorinated Biphenyls(PCB)	15 Feb 2022	0.040 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Prometryne	15 Feb 2022	0.030 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Simazine	15 Feb 2022	0.010 <mdl< td=""><td>µg/L</td><td>no</td></mdl<>	µg/L	no

THM (running annual average)	17 Jan 2022 19 Feb 2022 15 Mar 2022 14 Apr 2022 16 May 2022 21 Jun 2022 13 July 2022 16 Aug 2022 24 Sep 2022 20 Oct 2022 15 Nov 2022 15 Dec 2022	94.83	μg/L	no
Terbufos	15 Feb 2022	0.010 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Tetrachloroethylene	15 Feb 2022	0.350 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
2,3,4,6-Tetrachlorophenol	15 Feb 2022	0.200 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Triallate	15 Feb 2022	0.010 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Trichloroethylene	15 Feb 2022	0.440 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
2,4,6-Trichlorophenol	15 Feb 2022	0.250 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Trifluralin	15 Feb 2022	0.020 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no
Vinyl Chloride	15 Feb 2022	0.170 <mdl< td=""><td>μg/L</td><td>no</td></mdl<>	μg/L	no

[❖] MDL = the method detection limit - the minimum concentration of a substance that can be measured and reported with 99% confidence that the concentration is greater than zero.

List any Inorganic or Organic parameter(s) that exceeded half the standard prescribed in Schedule 2 of Ontario Drinking Water Quality Standards.

Parameter	Sample Date	Result Value	Unit of Measure	ODWS MAC maximum allowable concentration
Sodium (Na)	14 Feb 2020 (every 60 months)	28.2	mg/L	20 mg/L
Sodium (Na) re-sample	21 Feb 2020	26.6	mg/L	20 mg/L
Trihalomethanes (THM)	running annual average (RAA)	94.83	μg/L	100 μg/L
Haloacetic Acids (HAA)	running annual average (RAA)	84.8	μg/L	80 µg/L

Sodium

Sodium levels in drinking water are every 57 months. The aesthetic objective is 200 mg/L meaning at levels less than this, sodium will not impair the taste of the water. When sodium levels are above 20 mg/L the MECP and MOH are notified. Middlesex London Health Unit (MLHU) provides a "Fact Sheet" on sodium in drinking water which is included annually in January water bills and is available at:

https://www.thamescentre.on.ca/sites/default/files/2019-05/MLHUSodiumDorchester.pdf

The most recent sodium sample (February 21st, 2020) returned with a resulting concentration of 26.6 mg/L.

Trihalomethanes (THMs)

A Trihalomethane (THM) sample is required monthly from the distribution system. THMs are a by-product of the disinfection process. Chlorine is used to protect the water supply from microorganisms such as bacteria and viruses. When natural occurring organic material is present, chlorine can produce THMs. The current maximum allowable concentration, as a running annual average, for THMs in a drinking water supply in Ontario is 100 micrograms per litre (μ g/L).

Haloacetic Acids (HAA)

A Haloacetic Acid (HAA) sample is required quarterly from the distribution system. HAAs are a recently added sample requirement listed in the MECP Ontario Regulation 169/03 and level exceedances are reportable beginning January 1, 2020. Similar to THMs, HAAs are a by-product of the disinfection process. Chlorine is used to protect the water supply from microorganisms such as bacteria and viruses. When natural occurring organic material is present, chlorine can produce HAAs. The current maximum allowable concentration, as a running annual average, for HAAs in a drinking water supply in Ontario is 80 micrograms per litre (µg/L). On October 12, 2022 the Middlesex-London Health Unit issued a public health notice relating to the excess levels of HAAs in the Dorchester water system. The public health notice is available at:

https://www.thamescentre.on.ca/sites/default/files/2022-10/Joint HaloaceticAcidThamesCentre erls FINAL 221006.pdf