

Hydrogeological Assessment

FINAL REPORT

Auburn Developments

Project Name:

Hunter Farm Development Marion Street Dorchester, Ontario

Project Number:

LON-21008138-A0

Prepared By:

EXP Services Inc.
405 Maple Grove Road
Unit 6
Cambridge, Ontario, N3E 1B6
t: +1.519.650.4918
f: +1.519.650.4603

Date Submitted:

June 14, 2022

Hydrogeological Assessment

Auburn Developments

Type of Document:

Final Report

Project Name:

Hunter Farm Development Marion Street Dorchester, Ontario

Project Number:

LON-21008138-A0

Prepared and Reviewed By:

EXP Services Inc.

405 Maple Grove Road, Unit 6

Cambridge, ON, N3E 1B6

Canada

t: +1.519.650.4918

f: +1.519.650.4603

Hagit Blumenthal. M.Sc., P.Geo

Hydrogeologist, Earth and Environment

Heather Jaggard, M.Sc., P.Geo.

Hydrogeologist, Earth and Environment

Date Submitted:

June 14, 2022

Executive Summary

EXP Services Inc. (EXP) was retained by **Auburn Developments** to conduct a hydrogeological assessment of the proposed development to be located south of Marion Street and to the east and west of Richmond Street in Dorchester, Ontario, hereinafter referred to as the 'Site'.

The objective of the hydrogeological assessment was to examine the hydrogeological characteristics of the Site by reviewing the Ministry of the Environment, Conservation and Parks (MECP) Water Well Records (WWR), reviewing the soils and groundwater information provided from a series of sampled boreholes and monitoring wells at the Site, compiling a site wide monthly water balance, collecting a full year of groundwater elevations to identify any seasonal variations, and assess the natural heritage features on the property. It is understood that the hydrogeological assessment will be submitted for review and approval by the County of Middlesex (Thames Centre) and the Upper Thames River Conservation Authority (UTRCA).

Based on the results of the hydrogeological assessment, the following findings are presented:

- There are several mapped surface water features across the Site including the Sandusky Drain, the Porter Subdivision Drain and the Hunter Branch which all drain to the south into the Hunt Drain. In addition, three
 (3) unmapped wetlands are located on the Site which are all considered regulated lands of the UTRCA (Wetland A to the west of the Sandusky Drain and Wetlands B and C in the northeast portion of the Site);
- Surface drainage follows Site topography and generally flows towards the Drains to the southwest and eventually south to Thames River;
- The stratigraphy at the Site is heterogenous with silt, sandy silt/silty sand clayey silt/till at surface overlying sand/ sand and gravel which is discontinuous in nature. The sand is present mostly in the western portion of the Site and becomes exposed at surface in the southwest corner of the Site. Based on borehole logs, the sand layer is up to 4.5 m thick. Surficial organic deposits were noted in the vicinity of Wetland A west of the Sandusky Drain;
- Overall, groundwater levels across the Site are relatively high and near ground surface with groundwater levels measured within 1 meter below ground surface (bgs). Groundwater elevations in the majority of the wells were elevated in the spring and showed a direct response to precipitation events;
- Portions of the Site are mapped as a significant groundwater recharge area and a highly vulnerable aquifer;
- Single Well Response Tests (SWRT) were completed on four (4) of the monitoring wells. Based on the test results, the estimated hydraulic conductivities are 8.2×10^{-4} m/s for sand and between 3.2×10^{-8} m/s and 9.0×10^{-7} m/s for silt;
- Three (3) grain size analyses were carried out on samples of the sand and gravel till, silt till and sand. The hydraulic conductivity ranged from 3.1 x 10⁻⁷ m/s in silty sand till, to 4.5 x 10⁻⁵ m/s in sand (BH9);
- Groundwater chemistry results did not exceed the Ontario Drinking Water Quality Standards, Objectives and Guidelines (ODWQS) for any of the analyzed parameters with the exception of uranium which exceeded the

Final Report

Project Name: Hunter Farm Development – Marion Street, Dorchester, ON

Project Number: LON-21008138-A0
Date: June 14, 2022

ODWQS of 20 ug/L with a concentration of 35 ug/L at BH7/MW-A on March 17, 2022. The Ontario Provincial Water Quality Objectives (PWQO) guidelines were exceeded for several analyzed parameters in surface water;

- The monitoring wells on Site have been maintained for ongoing study past the completion of this report. When the wells are no longer required, they should be decommissioned in accordance with O. Reg. 903;
- The post development infiltration target of 80%, as suggested by the Conservation Ontario Guidelines, can be achieved by redirecting runoff for infiltration using secondary infiltration and run-off reduction techniques;
- Preliminary dewatering calculations suggest a Category 3 Permit to Take Water will be required for construction dewatering, specifically in the southwest portion of the Site, where a shallow saturated sandy aquifer was observed;
- During construction, short term impacts to the shallow groundwater may occur, where excavations crossing the shallow groundwater require construction dewatering; and,
- A total of 45 domestic, one (1) livestock, and one (1) public groundwater supply wells are located within a 500 m radius of the Site. Four of the domestic wells and the public well were installed into the shallow overburden (<10 m bgs). Based on the results from the door-to-door survey, it has been confirmed that a number of residences within 500 m of the Site utilize private well water.

A full year of groundwater elevation monitoring (May 2021 to May 2022) and water quality monitoring was completed in support of the hydrogeological investigation. Based on the hydrogeological data collected from the property, a good understanding has been captured regarding the groundwater conditions related to site development. It is our hope that this Final Report will be sufficient for Site Plan Submission.

Table of Contents

1.	INTRO	JDUCTION AND BACKGROUND	
	1.1	Background	1
	1.2	Terms of Reference and Scope of Work	2
	1.3	Proposed Development and Stormwater Management Strategies	
2.		HODOLOGY	
۷.		Borehole Drilling and Monitoring Well Installations	
	2.1		
	2.2	Piezometer and Staff Gauge Installations	
	2.3	Well Development and Groundwater Sampling	
	2.4	Surface Water Sampling	6
	2.5	Long-Term Groundwater Elevation Monitoring	7
	2.6	Hydraulic Conductivity Testing	7
		6.1 Single Well Response Tests (SWRTs)	
		6.2 Grain Size Analyses	
3.	SITE [DESCRIPTION AND GEOLOGIC SETTING	8
	3.1	Site Location and Description	8
	3.2	Topography and Drainage	8
	3.3	Wetlands and Ecology	8
	3.4	Site Geology	10
		4.1 Bedrock Geology	
		4.2 Overburden Geology	
		4.3 Site Specific Surficial Geology	
4.		OGEOLOGIC SETTING	
	4.1	Regional Aquifer	
		1.1 Overburden Aquifers	
	4.2	Site Specific Groundwater Elevations and Flow	
		2.1 Monitoring Wells	
	4.3	Shallow Groundwater and Surface Water Stations	14
	4.4	Hydroperiod and Recharge	15
	4.5	Hydraulic Gradients and Flow	17
	4.6	Hydraulic Conductivity	17
	4.7	Groundwater and Surface Water Quality	18
5.	MON	THLY WATER BALANCE ASSESSMENT	20

Date: June 14, 2022

	5.1.	Precipitation and Evapotranspiration	20
	5.2	Infiltration and Runoff	21
	5.3	Pre-development and Post-development Calculations	21
	5.4	Secondary Infiltration Opportunities	23
6.	SOUR	RCEWATER PROTECTION CONSIDERATIONS	25
	6.1	Significant Groundwater Recharge Areas (SGRA)	25
	6.2	Highly Vulnerable Aquifers (HVA)	25
7.	IMPA	ACT ASSESSMENT	27
	7.1	Water Well Users	27
	7.2	Door to Door Well Survey	27
	7.3	Surface Water Features	28
	7.	3.1 General Comments	29
	7.4	Construction Dewatering Considerations	29
8.	QUAL	LIFICATIONS OF ASSESSORS	31
9.	REFEI	RENCES	32
10.	GENE	RAL LIMITATIONS	33

 ${\it Project Name: Hunter Farm Development-Marion Street, Dorchester, ON}$

Project Number: LON-21008138-A0
Date: June 14, 2022

Appendices

Appendix A – Drawings

Appendix B – Development Plan

Appendix C- Scoping Meeting Notes (April 20, 2022)

Appendix D – Borehole Logs

Appendix E – Grain Size Analyses

Appendix F – MECP Water Well Record Summary

Appendix G – Water Levels and Hydrographs

Appendix H – Single Well Response Test Data

Appendix I – Water Quality Tables

Appendix J – Laboratory Chain of Custody

Appendix K – Water Balance Assessment

Appendix L – Well Survey Questionnaire Responses

Appendix M – Dewatering Calculations

Appendix N – Limitations and Use of Report

Legal Notification

Tables (in text)

Table 1 – Monitoring Well Construction Details

Table 2 - Surface Water Station Details

Table 3 – Hydroperiod as defined by Groundwater and Surface Water Elevations

Table 4 - Hydraulic Conductivity Results

Table 5 – Surface Water Quality Exceedances

Table 6 – Summary of Water Balance Estimates

Table 7 – Well Survey Questionnaire Response Summary

Drawings (Appendix A)

Drawing 1 – Site Location Plan

Drawing 2 – Field Investigation Location Plan

Drawing 3 - Site Area Drainage

Drawing 4 – Regulated Lands of the UTRCA

Drawing 5 – Bedrock Topography

Drawing 6 – Physiographic Regions

Drawing 7 – Physiographic Landforms

Drawing 8 – Surficial Geology

Drawing 9 - Cross Section Location Plan

Drawing 10 - Generalized Cross Section A-A'

Drawing 11 - Generalized Cross Section B-B'

Drawing 12 - Generalized Cross Section C-C'

Drawing 13 – Groundwater Flow Direction

Drawing 14 – Piper Diagram for Water Quality

Drawing 15a - Schoeller Diagram for Water Quality (Major Ions) - September, 2021

Drawing 15b - Schoeller Diagram for Water Quality (Minor Ions) - September, 2021

Final Report

Project Name: Hunter Farm Development – Marion Street, Dorchester, ON

Project Number: LON-21008138-A0

Date: June 14, 2022

Drawing 15c – Schoeller Diagram for Water Quality (Minor Ions) – March, 2022

Drawing 15d – Schoeller Diagram for Water Quality (Minor Ions) – March, 2022

Drawing 16 – Drainage Catchments

Drawing 17 – Significant Groundwater Recharge Areas

Drawing 18 – Highly Vulnerable Aquifers

Drawing 19 – Approximate Location of MECP Registered Wells

1. Introduction and Background

1.1 Background

EXP Services Inc. (EXP) was retained by Auburn Developments to conduct a hydrogeological study and water balance assessment on the proposed development to be located south of Marion Street and east and west of Richmond Street, in Dorchester, Ontario, hereinafter referred to as the 'Site' (Appendix A, Drawing 1).

The proposed development consists of low and medium density residential homes with open space and park areas, as well as stormwater management (SWM) facilities. The preliminary conceptual development plan is included in **Appendix B**.

The objective of the hydrogeological study was to examine the hydrogeological characteristics of the Site by reviewing the Ministry of the Environment, Conservation and Parks (MECP) Water Well Records (WWR), reviewing the soil and groundwater information provided from a series of sampled boreholes and monitoring wells at the Site, compiling a Site wide monthly water balance, collecting a full year of groundwater elevations to identify any seasonal variations; and assess the natural heritage features on the property. The assessment provides comments pertaining to potential impacts on hydrogeological conditions at the Site and provides recommendations and design/construction measures, where applicable, to mitigate this potential for impact. This final report includes a full year of data collection thus fulfilling the requirements in support of the Site Plan Submission.

It is understood that the hydrogeological study and water balance assessment will be submitted for review and approval by the County of Middlesex (Thames Centre) and the Upper Thames River Conservation Authority (UTRCA) as part of the Draft Plan Approval for the proposed development. The study design and report have been compiled in accordance with the City of London Design Specification & Requirements Manual (2019) as well as the Conservation Authority Guidelines for Hydrogeological Assessments (2013).

The Site is located north of the Thames River and contains multiple mapped Drains (Sandusky Drain, the Porter Subdivision Drain, and the Hunter Branch which all drain to the south into the Hunt Drain) as well as unmapped wetlands. EXP staff confirmed the Porter Subdivision Drain does not exist on Site. Wetland A is defined as the wetland west of the Sandusky Drain, Wetland B is defined as the small wetland in the northeast portion of the Site, and Wetland C is defined as the larger wetland in the northeast portion of the Site (**Drawing 2**). These surface water features have been assessed based on their impact to, and dependence on, groundwater resources.

The UTRCA administers a regulation made under Section 28 of the Conservation Authorities Act, known as Development, Interference with Wetlands and Alterations to Shorelines and Watercourses (O.Reg. 157/06). The regulation was approved by the Minister of Natural Resources and Forestry on May 4, 2006. This regulation allows the UTRCA to ensure that proposed development and other activities have regard for natural hazard features. The UTRCA implements the regulation by issuing Section 28 permits for works in or near watercourses, valleys, wetlands, or shorelines, when required.

Property owners must obtain permission and/or a letter of clearance from the local Conservation Authority before beginning any development, site alteration, construction, or placement of fill within the regulated area. Permits are also required for any wetland interference, or for altering, straightening, diverting or interfering in any way with the existing channel of a creek, stream or river. It is EXP's understanding that the Site is subject to this regulation, and requires a Section 28 permit, as the Site contains a water feature.

Date: June 14, 2022

1.2 Terms of Reference and Scope of Work

The investigation was completed in accordance with the scope of work outlined through email correspondence provided in **Appendix C**. An official scoping meeting with the UTRCA was not completed, however, the study followed standard UTRCA study guidelines as completed for similar projects. An Authorization to proceed with this investigation was received from Mr. Steve Stapleton of **Auburn Developments Inc.** through email correspondence in May 2021.

A geotechnical investigation is also being conducted by EXP for the Site and will be submitted under separate cover. This investigation included excavation of 38 test pits across the Site. Test pit logs from the geotechnical investigation are included in **Appendix D**. Information from the geotechnical study will be incorporated into this report, wherever appropriate.

The purpose of the assessment was to examine the subsoil and groundwater conditions at the Site by advancing a series of boreholes at the locations chosen by EXP and illustrated on the Field Investigation Location Plan (**Drawing 2**).

The scope of work for the Hydrogeological Assessment consisted of the following tasks:

- 1. <u>Desktop Study</u>: This task consisted of a review of existing information including Site plans, previous reports, geological maps, geological cross sections, groundwater level information, borehole logs, and MECP WWR.
 - EXP has completed several Geotechnical Investigations and Hydrogeological Assessments in the vicinity of the Site and relevant details from those studies have been incorporated, where appropriate.
- 2. <u>Field Program</u>: Installation of ten (10) monitoring wells in nine (9) locations was carried out as part of the field program with one of the locations being completed with a set of nested wells (BH7/MW A/B). A total of five (5) surface water stations were installed within surface water bodies found across the Site. Water levels have been measured monthly since installation for a twelve (12) month period to identify seasonal fluctuations in the groundwater and surface water features on Site. Single well response tests (SWRT) were completed for the purposes of characterizing the hydrogeological conditions at the Site. Two (2) rounds of groundwater and surface water quality samples were collected and submitted for laboratory analysis. In addition, a door-to-door well survey was completed to confirm whether shallow wells are in use in the vicinity of the Site.
- 3. <u>Data Evaluation</u>: Evaluation of the available field and laboratory data, assessment of the dewatering requirements and potential dewatering effects on the surrounding environment, as applicable.
- 4. <u>Water Balance</u>: Preparation of a water balance assessment of the subject Site evaluating pre- and post-development conditions.
- 5. Reporting: This task consisted of preparing this hydrogeological assessment report. In preparing this report, EXP has considered the guidance material available in the Conservation Ontario Guidelines for Hydrogeological Assessments (Conservation Ontario, 2013) and City of London Design Specification & Requirements Manual (2019).

Date: June 14, 2022

Reference is made to **Appendix N** of this report, which contains further information necessary for the proper interpretation and use of this report.

1.3 Proposed Development and Stormwater Management Strategies

The proposed development will contain mixed single family and medium density residential properties with local servicing installed to standard depths of approximately 2 to 4 m below grade. The Draft Plan of Subdivision is provided in **Appendix B**. The residential development will also include park and open space areas, two (2) stormwater management (SWM) facilities, as well as interior roadways and sidewalks.

A Stormwater Management Report was completed by Stantec Consulting Ltd. (Stantec) on May 16, 2022 (Stantec, 2022). A map of the proposed storm drainage areas is provided in **Appendix B**. West of Richmond Street, runoff will be directed to the Sandusky Drain with no quantity controls proposed. Additionally, runoff conveyance from external areas (EXT-1 and EXT-2) to the Sandusky Drain will be maintained. East of Richmond Street two (2) SWM facilities are proposed located in block A209 in the north portion of the Site (dry pond) and in block A208b in the southern portion of the Site (wet pond). Runoff east of Richmond Street will be directed partly to the Sandusky Drain, the SWM facilities which ultimately drain west into the Sandusky Drain, Wetland C and to Ida Street southeast of the Site to mitigate peak flows to the Sandusky Drain. Implementation of Low Impact Development (LID) techniques will be considered in the final design stage.

2. Methodology

2.1 Borehole Drilling and Monitoring Well Installations

On May 11 and 12, 2021, ten (10) boreholes were advanced at nine (9) locations at the Site with installation of monitoring wells in all ten (10) boreholes. One (1) location was completed as 'nested' wells to allow for a hydrogeological gradient evaluation (BH7/MW – A/B). The locations of the boreholes are all presented on **Drawing 2**. Borehole drilling and monitoring well installation was completed under the technical supervision of EXP. The location and depth of the boreholes was based on the proposed development plan which was provided to EXP. Boreholes were advanced to depths ranging from 5.0 to 11.1 m below ground surface (bgs).

The boreholes were advanced using a track-mounted drill rig and standard 21 cm (8") OD hollow stem auger drilling techniques with split spoon sampling. During the drilling, the stratigraphy in the boreholes was examined and logged in the field by EXP technical personnel. Representative samples of the soils found in the boreholes were submitted for laboratory testing that included moisture content and gradation. Copies of the field borehole logs are provided in **Appendix D**. Copies of the soil gradation analyses are included in **Appendix E**.

All wells were constructed from 5.1 cm (2") diameter, schedule 40, polyvinyl chloride (PVC), flush-threaded casing. The appropriate number of risers were coupled with screen sections via threaded joints to construct the well. The well screens consisted of PVC pipe with 0.010-inch factory-generated slots. A summary of the well installation details is provided in **Table 1**, with the well locations shown on **Drawing 2**.

A primary filter pack consisting of silica sand was placed around the well screen in the borehole and extended above the top of the well screen. Hole Plug, a swelling bentonite clay that forms an effective barrier to the vertical movement of fluids when installed in a borehole, was used as a seal above the filter pack.

The ground surface and top of well pipe elevations were collected by a Sokkia GPS unit, capable of collecting accurate location and elevation measurements to the mm scale.

Date: June 14, 2022

Table 1 – Monitoring Well Construction Details

Well ID	Ground Surface Elevation* (m amsl)	Top of Standpipe Elevation* (m amsl)	Completion Depth (m bgs)	Screen Length (m)	Screened Strata
BH1/MW	260.80	261.60	9.1	1.52	Sand and Gravel; Sand
BH2/MW	256.00	256.90	4.6	1.52	Silt
BH3/MW	256.04	256.89	5.3	1.52	Sand; Sandy Silt
BH4/MW	256.03	256.85	4.6	1.52	Sand
BH5/MW	257.64	258.57	3.8	1.52	Sandy Silt; Sand; Silt Lamination; Silt Till
BH6/MW	268.06	268.90	10.7	1.52	Sand; Clayey Silt
BH7/MW-A	264.30	265.08	6.1	1.52	Silt; Silt Till
BH7/MW-B	264.28	265.11	3.0	1.52	Silt; Clayey Silt
BH8/MW	257.53	258.43	3.8	1.52	Sand; Sandy Silt Till
BH9/MW	266.14	266.96	4.6	1.52	Sand

Notes:

- 1. m amsl denotes metres above mean sea level.
- 2. m bgs denotes metres below ground surface.
- * elevations were collected by a Sokkia GPS unit

2.2 Piezometer and Staff Gauge Installations

A total of five (5) surface water stations were installed throughout the Site on May 27, 2021, in a combination of surface Drains and wetland features. Each surface water station was installed with a shallow groundwater piezometer and surface water staff gauge. Surface water Station 1 was installed in Wetland A west of the Sandusky Drain and Richmond Street. Surface water Station 2 was installed downstream at the south end of the Sandusky Drain and surface water Station 3 was installed upstream within the northern end of the Sandusky Drain. Surface water stations 4 and 5 were installed within the two (2) wetlands located in the northeast corner of the Site in Wetland B and Wetland C, respectively. The locations of each station are shown on **Drawing 2**. The following **Table 2** outlines the surface water station details.

The piezometers were installed with a 6-inch Solinst drive point end (6-inch screen length). The Solinst drive point piezometer ends have a stainless steel, 50 mesh cylindrical filter screen, within a ¾" (20mm) stainless steel drive-point body.

A staff gauge was installed at each surface water station within the surface water body in order to capture monthly surface water elevations. This staff gauges are referred to as SG1 to SG5.

Each piezometer and staff gauge was surveyed using a Sokkia GPS unit, capable of collecting accurate location and elevation measurements to the mm scale.

Date: June 14, 2022

Table 2 - Surface Water Station Details

Station ID	Piezometer ID	Ground Surface Elevation (m amsl)	Top of Piezometer Elevation (m amsl)	Completion Depth (m bgs)	Screen Length (m)	Screened Strata	Staff Gauge Installed
Station 1	P-1	255.52	256.56	1.02	0.15	Soft Soil (likely organic)	Yes (SG1)
Station 2	P-2	254.58	255.88	0.7	0.15	Soft Soil (likely organic); Sand and Gravel	Yes (SG2)
Station 3	P-3	256.21	257.55	1.08	0.15	Sand and Gravel	Yes (SG3)
Station 4	P-4	263.57*	264.67	1.03	0.15	Silt/Clay	Yes (SG4)
Station 5	P-5	264.43	265.68	1.03	0.15	Soft Soil (likely organic)	Yes (SG5)

- Notes: 1. m amsl denotes metres above mean sea level.
 - 2. m bgs denotes metres below ground surface.
 - 3. * assumed elevation based on SG elevation

2.3 Well Development and Groundwater Sampling

Monitoring wells were developed following installation. The wells were developed to:

- remove fine soil particles adjacent to the well screen that may otherwise interfere with water quality analyses;
- restore the groundwater properties that may have been disturbed during the drilling process;
- improve the hydraulic communication between the well and the geologic materials; and,
- remove water, if any, added during the drilling process.

Wells were generally developed by removing a minimum of ten times the volume of water contained in the well casing (casing volume) where possible using rigid high-density polyethylene (HDPE) tubing fitted with Waterra™ inertial pumps.

Groundwater samples were collected from four (4) selected monitoring wells on September 28, 2021 and March 17, 2022 for analysis of groundwater quality. Groundwater chemistry results are presented and discussed in **Section 4.4**.

2.4 Surface Water Sampling

Surface water samples were collected from four (4) selected surface water stations on September 28, 2021 and March 17, 2022 in order to establish baseline surface water quality. Surface water chemistry results are presented and discussed in Section 4.4.

Date: June 14, 2022

2.5 Long-Term Groundwater Elevation Monitoring

Water level monitoring in all monitoring wells and piezometers installed on Site has been completed on a monthly basis (with the exception of the month of June) since installation in May 2021 until the end of April 2022 for a one-year period. Measurements were manually collected using a battery-signal water level tape.

Water level dataloggers were installed in four (4) monitoring wells (BH3/MW, BH7/MW-A, BH7/MW-B, BH9/MW) and within the shallow groundwater piezometers at surface water stations SW1, SW2, SW4 and SW5 to assist in the evaluation of seasonal water level fluctuation, groundwater/surface water interactions, and the influence of precipitation on surface water and groundwater levels across the Site. An additional logger was placed at surface and used for barometric compensation. The dataloggers were installed in the monitoring wells on May 18, 2021 and in the piezometers on May 27, 2021 and remained in place for continued monitoring until the monitoring period was completed at the end of April, 2022. Water level measurements were logged every 24 hours.

2.6 Hydraulic Conductivity Testing

Hydraulic conductivity estimates for the soils were determined using two methods. The first method is applicable to saturated soils at depth and involves single well recovery tests (SWRT) within the installed monitoring wells. The second method involves a calculated estimation of hydraulic conductivity based on soil sample particle size analysis.

2.6.1 Single Well Response Tests (SWRTs)

Single Well Response Tests (SWRTs) were completed in monitoring wells BH2/MW, BH4/MW, BH7/MW-A and BH8/MW on May 17, 2021 to estimate hydraulic conductivity of the subsurface soils. The test method consisted of an initial purging of the well and subsequent monitoring of the rise in the water level in the well over time. This method is applicable to saturated soils at depth.

The results from the SWRTs were analyzed using the mathematical solution by Hvorslev (1951) for unconfined aquifer as provided in the software AQTESOLV TM Pro v. 4.5 and involved matching a straight-line solution to water-level displacement data collected during the recovery test. The following equation was used to estimate the hydraulic conductivity (K);

 $K (m/s) = [r^2 ln(L/R)] / [2 L T_o]$

where: (T_o) is the initial change

r is the radius of the well casing; R is the radius of the well screen; and, L is the length of the well screen.

2.6.2 Grain Size Analyses

A total of three (3) soil samples were selected for grain size distribution analysis testing. Due to the nature of the Site soils, estimated hydraulic conductivity (K) values were determined using different methods depending on the soil sample characteristics including the Kaubisch, Kozeny-Carman, and Beyer methodologies.

3. Site Description and Geologic Setting

3.1 Site Location and Description

The Site is located south of Marion Street, and to the east and west of Richmond Street in Dorchester, Ontario. The Site is currently occupied by agricultural fields and farming structures to the east side of Richmond Street. The Site is irregular in shape and measures approximately 45.31 hectares in total area. The site is bounded by Canadian National Railway tracks to the south, undeveloped land/residential development to the east, and residential development to the north and west (**Drawing 1**).

The proposed development consists of low and medium-density residential homes with open space and park areas, as well as two (2) stormwater management (SWM) facilities. The conceptual development plan is included in **Appendix B**.

3.2 Topography and Drainage

Based on topographic mapping, the area is generally hilly with a topographic high of approximately 275 m above mean sea level (amsl) located at the northeast corner of the Site and a topographic low of 256 m amsl located in the western portion of the Site associated with a surface water feature.

There are several surface water features across the Site which flow south towards the Thames River. These features include the Sandusky Drain, the Porter Subdivision Drain and the Hunter Branch which all drain south into the Hunt Drain. EXP staff noted that the mapped Porter Subdivision Drain does not exist on Site. According to MTE Consultants Inc. who completed the ecology study for the Site, the unnamed drain south of TP15 and TP16 does not exist as well. Additionally, there are unmapped wetlands including wetland A west of the Sandusky Drain and Wetland B and Wetland C in the northeast portion of the Site. Maps of the surface water features and drainage on Site are provided in **Drawing 2** and **Drawing 3**.

The Site is located in the Dorchester watershed. The areas surrounding the drains and Wetlands B and C in the northeast portion of the Site are regulated by the UTRCA, as shown on **Drawing 4**. Surface runoff from the Site generally flows toward the drains to the southwest and eventually south to Thames River. A detailed description of the drainage areas on Site is provided in Section 5.2.

3.3 Wetlands and Ecology

A detailed ecology study for the Site was completed by MTE Consultants Inc. A map of the ecological land classification and vegetation communities is provided in **Appendix B**. Below is a brief description of the vegetation communities on Site:

- Community 1 is a Mineral Cultural Meadow (CUM1) consisting of Sugar Maple, Manitoba Maple with some Black Locust and Eastern Cottonwood. The regionally-rare species Cockspur Hawthorn was also observed in Community 1.
- Community 2 (Wetland C) is an Organic Shallow Marsh (MAS3) consisting of Tamarack with Goldenrod and Dogwood, Sedge, Cattail, Reed Canary Grass, Skunk Cabbage (a medium sensitivity groundwater indicator plant) and Common Boneset (a low sensitivity groundwater indicator plant).

Date: June 14, 2022

- Community 3 (Wetland C) is a White Cedar Organic Coniferous Swamp (SWC3) consisting of Eastern White
 Cedar. Groundwater indicators observed in Community 3 include Jack-in-the-Pulpit (medium sensitivity),
 Spotted Joe-Pye weed (low sensitivity), Skunk Cabbage (medium sensitivity), Great Blue Lobeila (medium
 sensitivity), Naked Mitrewort (medium sensitivity) and Sensitive Fern (medium sensitivity). Regionally-rare
 species observed in Community 3 include Evergreen Wood Fern, Downy Willowherb, Bristly Dewberry and
 Purple Meadow-rue.
- Community 4 is a Mineral Cultural Woodland (CUW1) consisting of Apple and Manitoba Maple with some occasional Ash and Skunk Cabbage (a medium sensitivity groundwater indicator).
- Community 5 (Wetland B) is a Shallow Marsh (MAS) consisting of Willow, Eastern Cottonwood, White Elm Bitter Nightshade, Willow and Manitoba Maple.
- Community 6 is a combination of a Mineral Meadow Marsh (MAM2) and a Mineral Cultural Meadow (CUM1). Groundwater indicators observed in Community 6 include Spotted Joe-Pye weed (low sensitivity), Skunk Cabbage (medium sensitivity), Common Boneset (low sensitivity) and Great Blue Lobeila (medium sensitivity). Regionally-rare species observed in Community 6 include Downy Willowherb and Purple Meadow-rue.
- Community 7 is a Mineral Cultural Meadow (CUM1) consisting of Eastern Cottonwood, Ash, Manitoba Maple,
 Freeman Maple, Willow, Norway Maple, Eastern Redcedar, Spirea and Dogwood. Skunk Cabbage and
 Turtlehead medium sensitivity groundwater indicator plants were also observed in Community 7.
- Community 8 (Wetland A) is a Mineral Meadow Marsh (MAM2) consisting of groundwater indicators including Tussock Sedge (medium sensitivity), Spotted Joe-Pye weed (low sensitivity), Skunk Cabbage (medium sensitivity), Common Boneset (low Sensitivity), Great Blue Lobeila (medium sensitivity) and Sensitive Fern (medium sensitivity). Regionally-rare species in Community 8 include Water Sedge, Downy Willowherb and Purple Meadow-rue.
- Community 9 is a Mineral Cultural Meadow (CUM1) consisting of Manitoba Maple, Willow and Trembling
 Aspen with occasional European White Poplar. Spotted Joe-Pye weed a low sensitivity groundwater indicator
 plant and Great Blue Lobeila a medium sensitivity groundwater indicator plant were also observed in
 Community 9. Regionally-rare species observed in Community 6 include Downy Willowherb and Purple
 Meadow-rue.
- Community 10 is a Residential Farmyard. Northern Catalpa, Hackberry, Silver, Freeman and Manitoba Maple, Ailanthus, Willow and Norway Spruce are found within this Community.

Wetland B (Community 5) is proposed to be removed and may be either compensated on-site, adjacent to Wetland C (community 2), or may be compensated off-site. Wetland A (Community 8) will be predominantly retained as Park space. Buffer areas to be implemented around Wetlands A and C are still in discussion and will be finalized in the final design stage.

3.4 Site Geology

3.4.1 Bedrock Geology

The Site is underlain by limestone, dolostone and shale of the Dundee Formation (OGS, 2011). This formation consists of 60 to 160 feet (18 to 49 m) of light brown, medium-grained with some minor chert (Hewitt, 1972), and is part of the Algonquin Arch, which forms a ridge along the southwestern Ontario peninsula between the Michigan Basin (to the northwest) and the Appalachian Basin (to the southwest). Bedrock is generally not exposed in the area.

Review of bedrock topography mapping (**Drawing 5**; OGS, 1978) indicates the bedrock surface is found at an elevation of approximately 236 m amsl in the vicinity of the Site. The bedrock surface generally slopes to the south in this area. Review of MECP Well records within 1000 m from the centre of the Site (**Appendix F**) indicates an overburden thickness of approximately 11 to 37 m. Bedrock was not encountered during the drilling program completed as part of this investigation.

3.4.2 Overburden Geology

The physiography of Southwestern Ontario was altered significantly by the glacial and interglacial periods that took place throughout the Quaternary period. The overburden deposits which are present in the study area were formed by numerous glacial events during the late Wisconsinan glacial stage approximately 10,000 to 23,000 years before present. There were two distinct glacial lobes present in Southwestern Ontario during this period. The Huron Lobe advanced from Lake Huron southwards, and the Erie Lobe advanced from the northeast, receding to the east.

During the advancement of the glacial ice sheets, bedrock and unconsolidated sediments were eroded. During the recession of the glaciers, the eroded materials were deposited in lakes, rivers and along spillways, contributing to the present configuration of moraines, abandoned spillways, drumlins, eskers, abandoned shorelines, and various still-water sediment deposits.

Deposits in the area can be contributed to the Port Bruce Stadial period. In the London area, a series of east-west recessional and end moraines were formed, along with the Port Stanley Till Plain. Deposition of the basal portion of the Port Stanley Till was formed during the initial advance of the Erie Lobe. Overlying till was deposited during subsequent cycles of advance and retreat, resulting in silt and sand layering within the till plain.

The surficial deposits were mapped and categorized into a number of physiographic regions by Chapman and Putnam (1984). The northern portion of the Site is part of a physiographic region known as the Oxford Till Plain and is also mapped as an undrumlinized till plains landform. The physiographic region in the southern portion of the Site is part of a physiographic region known as Mount Elgin Ridges and is also mapped as a spillway landform. Mapping of the physiographic regions and landforms at the Site is provided in **Drawing 6** and **Drawing 7**, respectively.

Quaternary mapping indicates that the Site consists of the Catfish Creek Till characterized by sandy silt to silt (OGS, 2000).

A review of surficial geological mapping by the Ontario Geological Survey (OGS, 2010) shows the northern portion of the Site is mapped primarily as sandy silt to silty sand textured till on Paleozoic terrain and the southern portion of the Site is primarily mapped as glaciofluvial deposits. Modern alluvial deposits of clay, silt sand and gravel with minor organic remains are mapped west of Richmond Street and are associated with the mapped drains. Minor coarse

Date: June 14, 2022

textured glaciolacustrine deposits of sand, gravel, minor silt and clay are mapped along the eastern Site boundary (**Drawing 8**).

3.4.3 Site Specific Surficial Geology

Ten (10) boreholes were completed by EXP in nine (9) locations across the Site, with installation of monitoring wells in all borehole locations. One (1) of the locations was completed as a 'nested' well set to allow for hydrogeological evaluation of potential vertical gradients. The locations of the boreholes are provided in **Drawing 2**. The boreholes were terminated at a maximum depth of between 5.0 and 11.1 m bgs. Borehole logs are provided in **Appendix D**.

Generalized stratigraphic cross sections through the Site, as shown in **Drawing 9**, are provided in **Drawings 10** to **12**. The following is a general description of the stratigraphy at the Site as shown in the cross sections.

As shown in cross section A-A' (**Drawing 10**), the northwest portion of the Site consists of surficial silt and clayey silt/till overlying a discontinuous layer of sand and gravel. The silt layer is also discontinuous and truncates the clayey silt/till layer in the area of BH2/MW. Further to the east, silty sand to sandy silt is found at surface overlying silt and clayey silt/till with a localized sand layer noted in BH9/MW.

As shown in cross section B-B' (**Drawing 11**), the southwest portion of the Site consists of surficial discontinuous sand and sand and gravel overlying silty sand to sandy silt. Further to the east the stratigraphy is more homogenous characterized by predominantly clayey silt/ till with a discontinuous sand lens noted at BH8/MW.

As shown in cross section C-C' (**Drawing 12**), the western portion of the Site consists of surficial silt, silty sand/sandy silt and silt clayey/till overlying sand and sand and gravel. This sand layer becomes exposed at surface at the southwest portion of the Site around BH3/MW. Based on borehole logs, the sand layer is up to 4.5 m thick (BH3/MW). Surficial organic deposits were noted in the vicinity of Wetland A.

4. Hydrogeologic Setting

In addition to the groundwater information collected from the monitoring wells installed at the Site, the following documents were reviewed to gain an understanding of the hydrogeological conditions in the area:

- Goff, K and D.R. Brown, 1981. Ground-Water Resources Summary. Thames River Basin Water Management Study Technical Report. Ontario Ministry of the Environment, Water Resources Report 14;
- Thames-Sydenham and Region Source Protection Committee. 2011. Upper Thames River Source Protection Area, Approved Updated Assessment Report. 12 August; and,
- MECP WWR within 1000 m of the centre of the Site.

4.1 Regional Aquifer

Goff and Brown (1981) described the potential for four regional aquifers in the study area; shallow unconfined overburden aquifer, intermediate and deep confined aquifers and a bedrock aquifer.

4.1.1 Overburden Aquifers

The uppermost shallow and unconfined overburden aquifer was described as consisting of lacustrine or glacio-fluvial sands that may, in some locations, be overlain by lower permeability silts and clays. Regionally, the shallow aquifer is generally associated with the Stratford Till Plain and glacial deposits and are typically less than 15 m in thickness. Shallow overburden aquifers are discontinuous in nature and are expected to be linked more directly to precipitation and recharge compared to the intermediate and deep overburden aquifers.

Intermediate depth (15 to 30 m bgs) and deep overburden aquifers (>30 m bgs) aquifers generally consist of saturated sand and gravel deposits in the overburden and are very discontinuous in nature due to the heterogeneous nature of glacial deposits. Sand and gravel layers are present in the Port Stanley and Catfish Creek glacial till sheets. The intermediate depth and deep overburden aquifers are generally confined by overlying silt, clay and glacial till deposits which limit vertical migration of shallow groundwater.

Locally, shallow groundwater flow is expected to follow the local topography, and generally drain southwest towards the Thames River. Similarly, on a regional scale, the deep overburden aquifer flow direction is reported to be towards the south-southwest (Dillon and Golder, 2004).

4.1.2 Bedrock Aquifer

The bedrock aquifer is contained within limestone of the Dundee Formation. The water quality is generally good with elevated levels of iron, sodium and chloride in some wells. As with the intermediate and deep overburden aquifers, the bedrock aquifer is confined by the overlying till material, which generally ranges in thickness up to 37 m in the vicinity of the Site. Wells extending into the shallow fractured bedrock (up to about 3 m) are typically considered to be hydraulically connected to the overlying sand and gravel deposits that are present at the bedrock-overburden interface.

Flow direction in the deeper confined aquifer(s) and regional groundwater system has not been assessed as part of this investigation. However, as part of the Middlesex-Elgin Groundwater Study (Dillon and Golder, 2004), groundwater flow within the deeper aquifer is generally in a south-southwest direction towards Lake Erie.

4.2 Site Specific Groundwater Elevations and Flow

4.2.1 Monitoring Wells

Manual water levels in the monitoring wells have been collected monthly from May 2021 until the end of April 2022. Details of the monthly water levels are summarized in **Appendix G**.

Overall, shallow groundwater levels of less than 1 m bgs were noted in monitoring wells BH2/MW and BH5/MW. These are shallow wells located along the Sandusky Drain. Shallow groundwater levels were also noted in BH7/MW-A/B located in the vicinity of Wetland B and BH8/MW located at the southern portion of the Site. The deepest groundwater levels were noted in BH1/MW (ranging from 4.21 m to 4.83 m bgs) and in BH6/MW (ranging from 8.68 m to 9.67 m bgs). These are the deepest wells onsite installed to depths of 9.1 m bgs and 10.7 m bgs, respectively.

Dataloggers were installed in monitoring wells BH3/MW, BH7/MW-A, BH7/MW-B, BH9/MW and within the shallow groundwater piezometers at surface water stations SW1, SW2, SW4 and SW5 to provide continuous water elevation monitoring. Dataloggers were installed in the monitoring wells on May 18, 2021, and within the piezometers on May 27, 2021, and have been collecting daily measurement since. Results collected to date are presented in **Appendix G** with precipitation data from weather station London CS (ID 6144478) located approximately 7.7 km northwest of the Site.

The hydrograph for monitoring well BH3/MW, screened in sand/sandy silt from 3.8 m to 5.3 m bgs, shows a gradual decline from May to September 2021 with groundwater elevation increasing as a direct response to significant precipitation events on September 22, 2021 (67 mm) and again on February 17, 2022 (38 mm). Static groundwater levels remained relatively stable between September 2021 and April 2022. Overall, groundwater elevation ranged from 254.21 m to 255.45 m amsl. These groundwater elevations correspond with groundwater levels of 1.83 m and 0.59 m bgs, respectively. Discrepancies between the datalogger and the manual measurements were noted between November 2021 and January 2022 and in April 2022.

Monitoring well BH7/MW-A (deep) is screened in silt/silt till from 4.6 m to 6.1 m bgs and monitoring well BH7/MW-B (shallow) is screened in silt/clayey silt from 1.5 m to 3.0 m bgs. The hydrographs for these nested monitoring wells are nearly identical indicating they are screened within hydraulically connected soils. Groundwater elevations within these wells declined from May to September 2021, increased from September to October 2021 following the September 2021 significant precipitation event and remained relatively stable from October 2021 to April 2022. Overall, groundwater elevations in these wells ranged from 262.74 m to 264.62 m amsl. These groundwater elevations correspond with groundwater levels of 1.54 m bgs and 0.32 m above grade, respectively. Direct responses to precipitation events were noted throughout the monitoring period.

The hydrograph for monitoring well BH9/MW, screened in sand from 3.0 m to 4.5 m bgs, shows a minor decline in groundwater elevations between May and September 2021, followed by an increase in September as a direct response to the September 2021 significant precipitation event. Groundwater elevations remained relatively stable between September 2021 and April 2022. Overall, groundwater elevations ranged from 264.50 m to 265.69 m amsl. These groundwater elevations correspond with groundwater levels of 1.64 m bgs and 0.45 m bgs, respectively. Direct responses to precipitation events were noted throughout the monitoring period.

A decrease in groundwater elevations during the monitoring period from May to September was noted in all the monitoring wells. This observation is consistent with groundwater trends observed in southern Ontario in which higher groundwater levels in early spring correspond with spring freshet. Seasonal fluctuations with elevated

Date: June 14, 2022

groundwater elevations as a result of significant rain events were observed in all the monitoring wells. Significant precipitation events during the monitoring period were noted on June 25, 2021 (33 mm), August 26, 2021 (57 mm), September 22, 2021 (67 mm) and February 17, 2021 (38 mm).

4.3 Shallow Groundwater and Surface Water Stations

Surface water (SW) Stations 1 to 5 were established across the Site. Dataloggers were installed in four (4) of the shallow groundwater piezometers (P-1, P-2, P-4 and P-5) in order to capture readings on a daily basis. Results from the dataloggers are presented in hydrographs presented in **Appendix G**.

Surface water Station 1 is located within Wetland A west of the Sandusky Drain. The hydrograph for piezometer P-1 shows a gradual increase in groundwater elevations between May and September 2021. Levels remained relatively stable between September 2021 and April 2022 with fluctuations of approximately 0.25 m. Overall, groundwater elevations in P-1 ranged from 254.73 m to 256.03 m amsl. These groundwater elevations correspond with groundwater levels of 0.79 m bgs and 0.51 m above grade, respectively. The gradual increase in groundwater elevations between installation to roughly September 2021 is likely due to slow recovery following piezometer installation. Above ground water levels in P-1 were observed between October 2021 and April 2022. Surface water readings from the staff gauge, SG1 were generally higher than the piezometer reading indicating downward vertical gradient and recharge conditions. Little to no direct response to precipitation events were observed in piezometer P-1.

Surface water Station 2 is located within the Sandusky Drain west of Richmond Street. The hydrograph for piezometer P-2 shows relatively consistent groundwater elevations throughout the monitoring period with fluctuations of about 0.25 m. Groundwater elevations in P-2 ranged from 254.47 m to 255.49 m amsl. These groundwater elevations correspond with groundwater levels of 0.11 m bgs and 0.91 m above grade, respectively. Above ground water levels and direct responses to precipitation events in P-2 were observed throughout the monitoring period. Surface water readings at the staff gauge, SG2, were found to be generally similar to the shallow groundwater measured within the piezometer, suggesting a close interaction between the surface water and groundwater at this location.

Surface water Station 3 is located within the Sandusky Drain east of Richmond Street. The hydrograph shows consistent water levels in both piezometer P-3 and the staff gauge SG3. Water levels in piezometer P-3 were consistently above grade and higher than the readings at staff gauge SG3. These conditions suggest an upward gradient and groundwater discharge conditions to surface water at this location. Groundwater elevations in P-3 ranged from 256.25 m to 256.71 m amsl corresponding to water levels of 0.04 m to 0.5 m above grade.

Surface water Station 4 is located within Wetland B. Similar to the hydrograph of BH7/MW, groundwater elevations in piezometer P-4 declined from May to September 2021, increased from September to November 2021 following the September 2021 significant precipitation event, and remained relatively stable from November 2021 to March 2022. Groundwater elevations in P-4 fluctuated by approximately 0.25 m and ranged from 262.70 m amsl to 264.16 m amsl. These groundwater elevations correspond with groundwater levels of 0.87 m bgs and 0.60 m above grade, respectively. Dry surface conditions were noted at the staff gauge SG4 between July and October 2021. Between October 2021 and April 2022 water levels at SG4 were consistently above groundwater levels in P-4 indicating downward vertical gradient and recharge conditions at this location.

Surface water Station 5 is located within Wetland C. Similar to piezometer P-1, the hydrograph for piezometer P-5 shows a gradual increase in groundwater elevations between May and June 2021 due to slow recovery following piezometer installation. Water levels in P-5 remained relatively stable between June 2021 and September 2021.

Final Report

Project Name: Hunter Farm Development – Marion Street, Dorchester, ON Project Number: LON-21008138-A0

Date: June 14, 2022

Following the September 2021 significant precipitation event, water levels in P-5 stabilized with fluctuations of approximately 0.25 m and increases as direct responses to precipitation events. Overall, groundwater elevations in P-5 ranged from 263.91 m to 265.11 m amsl. These groundwater elevations correspond with groundwater levels of 0.52 m bgs and 0.68 m above grade, respectively. Above ground water levels in P-5 were observed throughout the monitoring period. Surface water readings from the staff gauge, SG5 were generally similar to the piezometer levels indicating a close interaction between the surface water and groundwater at this location.

4.4 Hydroperiod and Recharge

Data Reference is made to the TRCA document Stormwater Management Criteria, Appendix D: Water Balance for Protection of Natural Features (August 2012). By definition, the hydroperiod is the seasonal pattern of water level fluctuation. It is the result of inflow and outflow, surface contours of the landscape, substrate and groundwater conditions. Defining the existing surface water and groundwater conditions in the area is essential in order to provide recommendations, mitigation strategies and contingency measures during the development of the property.

The range in water elevations measured across the Site (a measurable component of a hydroperiod) throughout the monitoring period is shown in **Table 3** below.

Date: June 14, 2022

Table 3 – Hydroperiod as defined by Groundwater and Surface Water Elevations

Location ID	Minimum Water Elevation (m amsl)	Maximum Water Elevation (m amsl)	Range (m)
BH1/MW	255.97	256.59	0.62
BH2/MW	254.99	255.46	0.47
BH3/MW*	254.21	255.45	1.24
BH4/MW	254.59	255.09	0.5
BH5/MW	256.82	257.27	0.45
BH6/MW	258.38	259.37	0.99
BH7/MW-A*	262.75	264.62	1.87
BH7/MW-B*	262.74	264.60	1.86
BH8/MW	256.95	257.25	0.3
BH9/MW*	264.50	265.69	1.19
P-1*	254.73	256.03	1.3
SG1	255.59	255.75	0.16
P-2*	254.47	255.49	1.02
SG2	254.71	254.94	0.23
P-3	256.25	256.71	0.46
SG3	256.01 (Dry)	256.48	0.47
P-4**	262.70	264.16	1.46
SG4	263.57 (Dry)	264.50	0.93
P-5	263.91	265.11	1.2
SG5	264.56	265.06	0.5

Note: * - Measurements obtained from datalogger

As shown in **Table 3**, the largest variation in water elevations occurred at BH7/MW-A and BH7/MW-B with a range of 1.87 m and 1.86 m respectively.

Typically, groundwater recharging conditions occur on Site from approximately October to April, as observed in the hydrographs. Based on available logger data the most notable significant recharge surges were in monitoring wells BH7/MW-A/B, located adjacent to Wetland B. There were approximately three significant (3) separate surges of recharge. The maximum magnitude of groundwater increase during these surges was as follows:

June 25 to June 26, 2021, recharge of 0.8 m in a day;

^{** -} Measurements collected from May 2021 to March 2022

- September 22 to September 23, 2021, recharge of 1.12 m in a day;
- February 17 to February 23, 2022, recharge of 0.5 m over 6 days (average of 0.08 m per day);

Therefore, during recharging events, the aquifer is found to recharge on the order of 0.08 m to 1.12 m per day.

Groundwater recharge did not occur from approximately May to September 2021 in monitoring wells BH7/MW-A/B, as the groundwater table was decreasing during this time period.

4.5 Hydraulic Gradients and Flow

The horizontal hydraulic gradient across the Site will vary due to the range in topography and resulting range in groundwater elevations. The hydraulic gradient is found to be approximately 0.01 m/m across the Site.

Groundwater elevations collected in nested monitoring wells BH7/MW-A/B were very similar and a vertical hydraulic gradient could not be determined.

Shallow groundwater flow across the Site is affected by hydraulic conductivity, topography, drainage, and geology. Based on the groundwater elevations across the Site it is determined that shallow groundwater is generally flowing in a southwesterly direction. Groundwater elevations and flow direction are presented in **Drawing 13.** The groundwater flow direction map represents seasonal high groundwater elevations from February, 2022. Groundwater discharging conditions are observed within the Sandusky Drain and are represented in the Groundwater Flow map in **Drawing 13**.

4.6 Hydraulic Conductivity

Single well recovery tests (SWRT) were performed on four (4) selected monitoring wells on Site (BH2/MW, BH4/MW, BH7/MW-A and BH8/MW) to evaluate the hydraulic characteristics of the soil on Site. The results of the tests are summarized in **Table 4**, and the calculations are presented in **Appendix H**. The results provide information regarding the hydraulic conductivity of the soils surrounding the well screen.

Based on these tests, the estimated hydraulic conductivities are 8.2×10^{-4} m/s for sand and between 3.2×10^{-8} m/s and 9.0×10^{-7} m/s for silt. These results agree with literature values of hydraulic conductivities for sand ranging from 10^{-5} to 10^{-2} m/s and silt ranging from 10^{-9} to 10^{-5} m/s (Table 2.2, Freeze and Cherry; 1979).

Grain size analyses were carried out on select soil samples collected from the boreholes, with results summarized in **Table 4**, and shown graphically in **Appendix E**. A total of three (3) soil samples from Site were selected for grain size distribution analysis testing. Based on the grain size analyses, the hydraulic conductivity ranged from 3.1×10^{-7} m/s in silty sand till (BH1) to 4.5×10^{-5} m/s in sand (BH9). A hydraulic conductivity of 1.1×10^{-6} m/s was estimated for the silt till (BH8). The results of all hydraulic conductivity testing are compiled in the table below.

Date: June 14, 2022

Table 4 – Hydraulic Conductivity Results

Sample ID	Lithology	Hydraulic Conductivity (m/s)	
BH2/MW	Silt	7.3 x 10 ⁻⁸	
BH4/MW	Sand	8.2 x 10 ⁻⁴	
BH7/MW-A	Silt; Silt Till	9.0 x 10 ⁻⁷	
BH8/MW	Sand; Silt Till	3.2 x 10 ⁻⁸	
Grain Size Analyses			
BH1, SA7	Silty Sand Till, Gravelly	3.1 x 10 ⁻⁷	
BH8, SA4	Silt Till, sandy	1.1 x 10 ⁻⁶	
BH9, SA5	Sand	4.5 x 10 ⁻⁵	

4.7 Groundwater and Surface Water Quality

Groundwater and surface water sampling was completed on September 28, 2021 and March 17, 2022. A total of four (4) groundwater monitoring wells (BH3/MW, BH7/MW-A and BH7/MW-B and BH9/MW) and four (4) surface water locations (SW Station 1, Station 2, Station 4 and Station 5) were selected for sampling. Water quality tables are presented in **Appendix I** and complete laboratory chain of custody results are provided in **Appendix J**.

Groundwater quality was compared to the Ontario Drinking Water Quality Standards, Objectives and Guidelines (ODWQS) (O.Reg. 169/03). Although the groundwater on Site is not planned for use as drinking water, these guidelines are used for comparison's sake only. As demonstrated in the tabulated results in **Appendix I**, no parameters exceeded the ODWQS guidelines for any sampled monitoring wells with the exception of uranium which exceeded the ODWQS of 20 ug/L with a concentration of 35 ug/L at BH7/MW-A on March 17, 2022.

Surface water quality was compared to Ontario Provincial Water Quality Objectives (PWQO) (MOEE 1994). The PWQO guidelines for several parameters were exceeded in the surface water stations. The following table summarizes the detected exceedances (**Table 5**). Total aluminum exceeded the PWQO guideline of 75 ug/L in all surface water stations. Total arsenic exceeded the PWQO guideline of 5 ug/L in surface water Station 1. The metals cobalt, iron and zinc concentrations exceeded the PWQO guideline in surface water Stations 1 and 5 and the PWQO guideline for copper was exceeded only in surface water Station 5.

Table 5 - Surface Water Quality Exceedances

Parameter	PWQO Guideline	Station 1 9/28/21	Station 1 3/17/22	Station 2 9/28/21	Station 2 3/17/22	Station 4 9/28/21	Station 4 3/17/22	Station 5 9/28/21	Station 5 3/17/22
Total Aluminum	75 ug/L	1300	84	*	75	140	100	940	1100
Total Arsenic	5 ug/L	7.3	*	*	*	*	*	*	*
Total Cobalt	0.9 ug/L	2.3	2.4	*	*	*	*	*	1.0
Total Copper	5.0 ug/L	*	*	*	*	*	*	*	7.7
Total Iron	300 ug/L	39000	39000	*	*	*	*	1400	6200
Total Zinc	20 ug/L	26	43	*	*	*	*	*	80

Note: * meets PWQO

All the remaining tested parameters met PWQO guidelines. Complete chain of custody laboratory results are provided in **Appendix J**.

A Piper Diagram was prepared for the groundwater and surface water quality samples and is shown in **Drawing 14**. Both the groundwater and surface water quality results generally plot within the calcium magnesium bicarbonate alkaline zone of the Piper Diagram with a few outliers. SW Station 1 was found to have the highest chloride concentrations, likely due to runoff from Marion Street. SW Station 4 has the highest concentrations of sulfate on September 28, 2021, as a result of its organic wetland composition. BH7/MW-A shows a different chemical signature between the two sampling events with the sample from March, 2022 being an outlier. This sample had a much larger concentration of total dissolved solids (610 mg/L) than the sample collected in September 2021 (230 mg/L) and it is possible that this affected the chemical signature of the March 2022 sample of BH7/MW-A in the piper plot.

Schoeller Diagrams were also prepared for the groundwater and surface water quality samples for major and minor ions (**Drawings 15a to 15d**). Surface water SW Station 1 shows the highest concentrations in NaCl in both sampling events, further suggesting road salt impact from Marion Street. Sulfate concentrations are lower in SW Stations 1, 4 (March, 2022) and 5 compared to all other sampling locations.

Date: June 14, 2022

5. Monthly Water Balance Assessment

The monthly water balance assessment for the Site was completed in accordance with the recommendations indicated in the guidance document "Hydrogeological Assessment Submissions: Conservation Authority Guidelines to Support Development Applications" (Conservation Ontario, 2013), and using appropriate site condition values obtained from Table 3.1 of the MOE Stormwater Management Planning and Design Manual (MOE, 2003). The results of the water balance are provided in **Appendix K**.

The water balance accounts for all water in and out-flows in the hydrologic cycle. Precipitation (P) falls as rain and snow. It can then run off towards wetlands, ponds, lakes, and streams (R), infiltrate into the ground (I), or evaporate from surface water and vegetation (ET). When long-term average values of P, R, I, and ET are used, then minimal or no net change to groundwater storage (Δ S) is assumed.

The annual water balance can be stated as follows:

 $P = ET + R + I + \Delta S$

Where:

P = precipitation (mm/year)

ET = evapotranspiration (mm/year)

R = runoff (mm/year)

I = Infiltration (mm/year)

 ΔS = change in groundwater storage (taken as zero) (mm/year)

5.1. Precipitation and Evapotranspiration

The annual total precipitation used for this water balance (1011 mm/yr) is based on data provided by Environment Canada, based on the 30 year average data for climate normals, using the nearest local weather station information (London CS ID 6144478, located approximately 7.7 km northwest of the Site). In this detailed monthly water balance, precipitation as rain and snow are both considered. Snow storage and resulting snow melt in the winter and early spring months is considered as part of the evapotranspiration volumes.

Evapotranspiration combines evaporation and transpiration and refers to the water lost to the atmosphere. The rate of evapotranspiration is a function of the water holding capacity of the soil and varies with soil and vegetation type and amount of impermeable surface cover.

Monthly evapotranspiration volumes were calculated using the monthly water balance graphical interface created by the U.S. Geological Survey (USGS), Open-File report 2007-1088 (McCabe and Markstrom, 2007). This interface uses the principles outlined by Thornthwaite and Mather (1957) and permits the user to easily modify water balance parameters and provide useful estimates of water balance components for a specified location.

Date: June 14, 2022

The difference between the annual precipitation and the annual evapotranspiration represents the surplus water which is available for infiltration and surface run-off. Distribution of the surplus water to infiltration is based on an infiltration factor based on site conditions for topography, cover vegetation and soil.

5.2 Infiltration and Runoff

The soil water holding capacities and infiltration rate were determined using values presented in Table 3.1 of the MOE Stormwater Management Planning and Design Manual (MOE, 2003) based on the vegetative cover and the hydrologic soil group. The weighted values based on the Site conditions are presented in the calculation sheets provided in **Appendix K**.

Localized infiltration rates will vary based on factors such as the saturated hydraulic conductivity of surface soils, land slope, rainfall intensity, relative soil moisture at the start of a rainfall event, and type of cover on the ground surface.

Based on soil mapping by the Ministry of Agriculture, Food and Rural Affairs, the surficial soils at the Site are predominantly B-type soils (sandy loam) within the eastern portion of the Site and D-A-type soils (clay-fine sand) in the western portion of the Site associated with the drains. This mapping is consistent with borehole and test pit logs from the Site indicating the soil cover is mainly silty sand, sandy silt to clayey silt in the eastern portion of the Site and sandy/organic in the western portion of the sand.

For the water balance analysis, soil moisture capacity for B-type soil was utilized in the eastern portion of the Site and mainly A-type soil in the western portion of the Site.

5.3 Pre-development and Post-development Calculations

Pre-development and Post-development monthly water balance calculations have been carried out and are based on available design data. This water balance will be provided to the stormwater engineer for consideration as part of the design of the proposed SWM strategy for the Site.

In general, the Site comprises a land area of approximately 45.31 hectares. To complete the Pre-development water balance, the Site was divided into four (4) drainage areas. The drainage areas are presented in **Drawing 16**. Area A (19.04 ha) drains directly into the Sandusky Drain. Based on the current development plan dated May 12, 2022 (**Appendix B**), it is understood that the Sandusky Drain and Wetlands A and C will be preserved in the post-development environment. Area B (7.17 ha) drains into Wetland C in the northeast portion of the Site, Area C (2.14 ha) drains to the southeast, and Area D (16.96 ha) drains south to southwest and ultimately reaches the Sandusky Drain through a culvert. It should be noted that Areas A and D both end in the Sandusky Drain and under post-development conditions, these areas are essentially combined as being drainage areas to the Sandusky Drain.

Existing conditions across the Site result in varying water holding capacities and infiltration factors. Each drainage area was individually estimated for the present coverage of vegetation under Pre-development conditions. Calculation worksheets are provided in **Appendix K**.

Water balance calculations were completed in accordance with the conceptual SWM strategy for the Site (Stantec, 2022). A map of the proposed drainage areas is provided in **Appendix B**. Detailed assumptions for the post-development water balance are included in **Appendix K**.

Table 6 provides a summary of the pre and post development water balance calculations.

Table 6: Summary of Water Balance Estimates

	Pre- Development	Post- Development	% Difference (No Mitigation)	Post - Development with Mitigation	% Difference with Mitigation	
	Drainage to	the Sandusky Drai	n			
Estimated Runoff (m³/year)	111,228	226,546	204%	135,928	122%	
Estimated Infiltration (m³/year)	69,161	36,354	53%	55,384	80%	
	Drainage to Wetland C					
Estimated Runoff (m³/year)	20,779	25,264	122%	10,106	49%	
Estimated Infiltration (m³/year)	14,554	8,223	57%	11,710	80%	
	Drainage to the	southeast (Ida Str	eet)*			
Estimated Runoff (m³/year)	6,506	3,212	49%	128	2%	
Estimated Infiltration (m³/year)	4,022	448	11%	3,224	80%	

^{*}Runoff and infiltration to the southeast (Ida Street) are significantly different due to a substantially smaller drainage area in the post development.

Due to the increased impermeable surfaces (such as rooftops, roadways, sidewalks, driveways), the proposed development is expected to result in a reduction in the post-development infiltration volumes, and a corresponding increase in the estimated run-off. Conservation Ontario Guidelines (Conservation Ontario, 2013) suggest a target of 80% of the pre-development infiltration being maintained in the post-development conditions.

Infiltration volumes to the Sandusky Drain is estimated to be 53% in the post-development environment with no mitigation measures implemented. If an estimated 40% of runoff was reduced and utilized for infiltration, the 80% target can be met in the Sandusky Drain catchment in the post-development environment.

Infiltration volumes to Wetland C is estimated to be 57% in the post-development environment with no mitigation measures implemented. If an estimated 60% of runoff was reduced and utilized for infiltration, the 80% target can be met in the Wetland C catchment in the post-development environment. It is recommended that only clean runoff from rooftops or landscaped areas be used as added mitigation to Wetland C.

Drainage to the southeast (proposed Ida Street) varies from 2.14 ha in the pre-development environment, to 0.54 ha in the post-development. Under post-development conditions, the majority of drainage is re-directed towards the Sandusky Drain. Due to this modified drainage path, the post-development infiltration and runoff volumes are low and would need to be mitigated significantly. At this time, the post-development mitigation measures are recommended across the development and these volume deficits in the southeast are likely to considered as mitigated volumes across the Site.

Date: June 14, 2022

Due to the infiltration volume deficits observed across the Site in the post-development environment, it is recommended to use secondary infiltration and run-off reduction techniques to improve post development infiltration as described below.

5.4 Secondary Infiltration Opportunities

Low Impact Development (LID) is a stormwater management strategy that seeks to mitigate the impacts of increased runoff and stormwater pollution by managing runoff as close to its source as possible (TRCA, 2010). Effective management of stormwater is critical to the continued health of our streams, rivers, lakes, fisheries and terrestrial habitats. The primary objectives of stormwater management includes maintaining the hydrologic cycle, protecting water quality, and preventing increased erosion and flooding.

The following list provides some mitigation measures which may be taken into consideration, during the detailed design stage of the development. These measures may include secondary infiltration by directing and capturing run-off water from impervious surfaces into landscaped areas where existing infiltration capacity can be utilized. More specifically, considerations may include the following:

- Landscaped areas should be graded to promote infiltration of surface water. Increased topsoil depth
 throughout yard and green space areas to reduce runoff. In general, a run-off reduction up to 30% may be
 possible in areas where increased topsoil thicknesses are utilized depending on final topsoil thickness,
 storm duration and intensity;
- Collection of rooftop run-off into side yard and rear yard swales and/or vegetative filter strips, which can be directed to infiltration trenches to promote infiltration;
- Installation of linear bioswales to collect and promote infiltration;
- Use of permeable pavers where feasible such as driveways and parking lots;
- Use of pervious pipes to promote infiltration of water collected in the storm sewer system;
- Routing pavement runoff to grassed areas;
- Planting of trees and bushes;
- Installing soakaway areas;
- Implementing rainwater harvesting (i.e. to re-use in toilet flushing and irrigation, etc.);
- Installing green roof technologies;
- Using filters/bio-retention (i.e. islands, parking areas, etc.);
- Installing absorbent landscaping; and,
- Installing oil/grit separators.

EXP Services Inc. Final Report

Project Name: Hunter Farm Development – Marion Street, Dorchester, ON
Project Number: LON-21008138-A0

Date: June 14, 2022

It is noted that water quality will need to be accounted for in the design of any mitigation measure, such as permeable pavers and pervious pipes, to account for potential impacts from contaminate sources such as winter maintenance on roads and parking lots.

If LID measures are being considered as part of the post-development design, consideration should be given to conducting field percolation tests, at proposed LID locations.

In terms of maintaining infiltration rates in post-development, the most effective stormwater management practices include installing infiltration trenches, lot grading, roof leader discharge to soakaway pits/pervious areas, using pervious pipes, and installing pervious catch-basins.

It is recommended that some of these practices be utilized in site planning and design in order to mitigate the impact of increased runoff and stormwater pollution. By implementing LID practices during development, infiltration volumes can be effectively stored and returned to the natural environment by various development technologies and methods described above.

6. Sourcewater Protection Considerations

6.1 Significant Groundwater Recharge Areas (SGRA)

Groundwater recharge is largely controlled by soil conditions, and typically occurs in upland areas. The groundwater flow direction has been previously identified as flowing in a southwesterly direction.

As defined in the Clean Water Act (2006), an area is a significant groundwater recharge area if,

- 1. the area annually recharges water to the underlying aquifer at a rate that is greater than the rate of recharge across the whole of the related groundwater recharge area by a factor of 1.15 or more; or
- 2. the area annually recharges a volume of water to the underlying aquifer that is 55% or more of the volume determined by subtracting the annual evapotranspiration for the whole of the related groundwater recharge area from the annual precipitation for the whole of the related groundwater recharge area.

An assessment report for the Upper Thames River Source Protection Area was completed by the Thames-Sydenham and Region Source Protection Committee. As defined by the Clean Water Act (2006) and identified by the Thames-Sydenham and Region Source Protection Committee, the eastern half of the Site is located within a SGRA with vulnerability scores of 4 and 6 (**Drawing 17**).

6.2 Highly Vulnerable Aquifers (HVA)

The susceptibility of an aquifer to contamination is a function of the susceptibility of its recharge area to the infiltration of contaminants. As defined in the *Clean Water Act (2006)*, the vulnerability of groundwater within a source protection area shall be assessed using one or more of the following groundwater vulnerability assessment methods:

- 1. Intrinsic susceptibility index (ISI).
- 2. Aguifer vulnerability index (AVI).
- 3. Surface to aquifer advection time (SAAT).
- Surface to well advection time (SWAT).

In the Thames-Sydenham and Region, HVAs were mapped using the ISI method. The ISI method is an indexing approach using existing provincial Water Well Information System (WWIS) database. The ISI method is described in detail in the MECP's Technical Terms of Reference (2001). However, in short, the ISI method is a scoring system that takes into consideration the unique hydrogeologic conditions at a particular location. The scores are determined using a combination of the saturated thickness of each unit and an index number related to the soil type, and as such, the scores reflect the susceptibility of the aquifer to contamination.

As defined in the MECP's 2001 Technical Rules,

an area having an ISI score of less than 30 is considered to be an area of high vulnerability;

Final Report

Project Name: Hunter Farm Development – Marion Street, Dorchester, ON Project Number: LON-21008138-A0

Date: June 14, 2022

- an area having an ISI score greater than or equal to 30, but less than or equal to 80, is considered to be an area of medium vulnerability; and,
- an area having an ISI score of greater than 80 is considered to be an area of low vulnerability.

The Thames-Sydenham and Region Source Protection Committee has determined, using the ISI method, that the western half of the Site is located within an HVA with a vulnerability score of 6 (**Drawing 18**).

7. Impact Assessment

7.1 Water Well Users

A search of the Ontario MECP WWR database was completed using a buffer of 1000 m from the centre of the Site to account for the site area. This resulted in the identification of 62 records for an area within approximately 500 m from the eastern and western Site boundaries and approximately 800 m from the northern and eastern site boundaries (**Drawing 19**). The majority of the wells were found to be located along Marion Street north of the Site.

Water uses in the area include the following:

- Domestic or domestic and livestock (45 wells);
- Livestock (1)
- Monitoring, test holes or observation wells (12 wells);
- Public (1);
- Unknown use (1); and
- Abandoned wells (2).

The approximate locations of identified wells are shown on **Drawing 19**, with the MECP WWR Summary provided in **Appendix F**. One of the MECP WWR classified as municipal (MECP Well ID 7115588) is a monitoring well based on the driller's log.

Domestic water supply in the local area wells is generally drawing from the confined intermediate sand and gravel aquifer or from the bedrock aquifer. Four (4) domestic wells and one public well within 500 m of the Site are reported as being less than 10 m deep. These wells were all installed between 1966 and 1979 and may no longer be in use given that much of the surrounding area is now developed and connected to municipal services as evident by the presence of fire hydrants in the area. If construction activities extend into the sand and gravel aquifer, there may be some impact to these shallow wells. A well survey was completed to further assess potential impacts. Results of the well survey are presented below.

Monitoring wells have been installed at the Site as part of the Site investigations to document stabilized groundwater conditions. Prior to the Site grading work, and when the monitoring wells are determined to be no longer required, the wells should be properly decommissioned in accordance with Ontario Regulation 903. Decommissioning a well which is no longer in use helps to ensure the safety of those in the vicinity of the well, prevents surface water infiltration into an aquifer via the well, prevents the vertical movement of water within a well, conserves aquifer yield and hydraulic head and can potentially remove a physical hazard.

7.2 Door to Door Well Survey

A door-to-door survey was completed in the vicinity of the mapped MECP WWR within 500 m of the Site along Marion Street to the north, Clara Street to the east, Catherine Street to the South and Ron Allen Drive to the west to confirm whether the shallow domestic wells are still in use. A total of 87 well survey forms were delivered on April 26, 2022.

To date, 12 responses have been received by EXP, and are summarized in **Table 7**, with full responses provided in **Appendix L**.

Date: June 14, 2022

Table 7 – Well Survey Questionnaire Response Summary

Address	Response Received
4647 Marion Street	Municipal Water – No well present
4611 Marion Street	Private Well: ~1.8 m bgs shallow well installed more than 60 years ago. Static Water Level: shallow *Based on the MECP WWR Driller Log, this well is dug to 24.4 m bgs (WWR Well ID: 4102895) No connection to municipal water
4984 Marion Street	Private Well- 19.8 m bgs well in use Likely no municipal water
4673 Marion Street	Private Well- 25.9 m bgs drilled well installed in ~1964 Static Water Level: 18.9 m bgs The property is connected to municipal water and the well is no longer in use.
4231 Catherine Street	Municipal Water – No well present
3826 Catherine Street	Private Well- in use well installed in ~1954, depth unknown Likely no municipal water
3832 Catherine Street	Municipal Water – No well present
4216 Catherine Street	Likely municipal water
4218 Catherine Street	Likely municipal water
289 Clara Street	Municipal Water – No well present
268 Clara Street	Private Well: ~2.4 m bgs shallow dug well Static Water Level: approximately 1.8 m bgs The property is connected to municipal water and the well is no longer in use.
272 Clara Street	Municipal Water – No well present

Based on the results from the door-to-door survey, it has been confirmed that a number of residences within 500 m of the Site utilize private well water.

7.3 Surface Water Features

Several drains are mapped within the Site include the Sandusky Drain, the Porter Subdivision Drain and the Hunter Branch which all drain south into the Hunt Drain. EXP staff noted the Porter Subdivision Drain does not exist on Site. Additionally, there are unmapped wetlands including Wetland A to the west of the Sandusky Drain and Wetland B and Wetland C in the northeast portion of the Site. Maps of the surface water features and drainage on Site are provided in **Drawing 2** and **Drawing 3**.

Wetland B is proposed to be removed and may be either compensated on-site in Wetland C or off-site. Wetlands A and C as well as the Sandusky Drain will be predominantly retained.

Project Name: Hunter Farm Development – Marion Street, Dorchester, ON
Project Number: LON-21008138-A0

Date: June 14, 2022

The current design plan for the Site includes natural heritage buffer areas surrounding each wetland area. During development of catchment areas to wetland features and surface water features, it is important that design features are considered which will provide sufficient quality and quantity of runoff and infiltration to the natural features, in order to maintain existing conditions.

The wetland and surface water features are considered as being vulnerable to contamination from surface sources. During construction, short term impacts to the surface water may be anticipated, particularly where vegetation on nearby land is stripped and area grading works are underway.

The following comments are provided with recommendations to help minimize impact to surface water features observed at the site:

- During the site grading work, suitable sedimentation controls will be required to help control and reduce the turbidity of run-off water which may flow towards the surface water features;
- A Best Management Practice (BMP) and spill contingency plan (including a spill action response plan) should be in place for fuel handling, storage and onsite equipment maintenance activities to minimize the risk of contaminant releases as a result of the proposed construction activities;
- Re-establishing vegetative cover in disturbed areas following the completion of the construction work;
- Limit the use of commercial fertilizers in landscaped areas which border a habitat feature; and,
- Limit the use of salts or other additives for ice and snow control on the roadways and parking areas.

7.3.1 General Comments

As due diligence, the following comments are provided with recommendations to help minimize impact to the surface water features on Site:

- During the site grading work, suitable sedimentation controls will be required to help control and reduce the turbidity of run-off water;
- A Best Management Practice (BMP) and spill contingency plan (including a spill action response plan) should be in place for fuel handling, storage and onsite equipment maintenance activities to minimize the risk of contaminant releases as a result of the proposed construction activities;
- Re-establishing vegetative cover in disturbed areas following the completion of the construction work;
- Limit the use of commercial fertilizers in landscaped areas which border a habitat feature; and,
- Limit the use of salts or other additives for ice and snow control on the roadways and parking areas.

7.4 Construction Dewatering Considerations

Daily construction water takings in excess of 50,000 L/day require an Environmental Activity and Sector Registry (EASR) in accordance with Ontario Regulation 63/16. For volumes of 400,000 litres or more per day, a Category 3 permit to take water (PTTW) applications will need to be approved by the MECP according to Sections 34 and 98 of the Ontario Water Resources Act R.S.O. 1990 and the Water Taking and Transfer Regulation O. Reg. 387/04.

Initial groundwater levels across the Site have been relatively high and near ground surface with groundwater levels up to less than 1 m bgs, with the exception of groundwater levels in monitoring well BH6/MW which is a the deepest

Project Name: Hunter Farm Development – Marion Street, Dorchester, ON Project Number: LON-21008138-A0

Date: June 14, 2022

well screened at 10.7 m bgs. For the dewatering calculations, groundwater elevations were assumed at 0.5 m bgs, for the purposes of calculating the 'worst case scenario'. The dewatering calculations are based on existing conditions in the southwest portion of the Site where a shallow saturated sandy aquifer was observed.

Dewatering calculations were completed based on the following conservative assumptions:

- basement excavations of 20 x 20 m;
- sanitary sewer excavations of 5 x 50 m;
- steady state unconfined flow conditions are occurring;
- a groundwater elevation at 0.5 m bgs was assumed based on shallow groundwater levels found seasonally across the Site;
- dewatering target is assumed to be 0.5 m below base of excavation at 3.0 m bgs (basement foundation) and 3.5 m bgs (sanitary sewer);
- the underlying confining layer of sandy silt was encountered at approximately 250 m amsl (6 m bgs);
- the saturated sand is assumed to be encountered at the dewatering target depth; and
- the predominant soil to be encountered is sand with a hydraulic conductivity of 8.2 x 10⁻⁴ m/s.

The Dupuit Forcheimer Equation for unconfined flow into a radial excavation for the basement and linear excavation for the sanitary sewer (Powers et al., 2007) were used to estimate lateral flow into the proposed excavations. Based on the assumptions above, the estimated maximum dewatering rate at the proposed excavations is approximately 1,500,000 L/day for the basement and 2,500,000 L/day for the sanitary sewer. Dewatering calculations are provided in **Appendix M**.

Based on available groundwater levels and hydraulic conductivities of soils at the Site and assuming typical foundation depth of 3.5 m bgs for servicing and/or basement construction, a Category 3 PTTW for dewatering purposes is expected to be required. Dewatering estimates will need to be updated once a detailed design for the Site becomes available.

Any collected water from service trenches and temporary excavations should be discharged a sufficient distance away from the excavated area to prevent the discharge water from returning to the excavation. Sediment control measures should be provided at the discharge point of the dewatering system.

During construction, short term impacts to the near surface and shallow groundwater quantity may be anticipated as a result of construction dewatering where wet soils are present in open excavations. The length of time where this impact would occur would be limited to the time when active pumping of the groundwater is being carried out. Once construction activities are complete, the shallow groundwater levels would be expected to stabilize.

Several of the private wells in the area are installed in the shallow sand and gravel aquifer to depths less than 10 m bgs. Residents in the vicinity of the Site should be notified prior to construction activities and contingency measures will need to be in place to mitigate impacts to their water supply, if necessary.

Project Name: Hunter Farm Development – Marion Street, Dorchester, ON Project Number: LON-21008138-A0

Date: June 14, 2022

8. Qualifications of Assessors

EXP Services Inc. provides a full range of environmental services through a full-time Earth and Environmental Services Group. EXP's Environmental Services Group has developed a strong working relationship with clients in both the private and public sectors and has developed a positive relationship with the Ontario MECP. Personnel in the numerous branch offices form part of a large network of full-time dedicated environmental professionals in the EXP organization.

This report was authored by Ms. Hagit Blumenthal M.Sc., P.Geo. Ms. Blumenthal has experience in conducting hydrogeological assessments. Ms. Blumenthal is a hydrogeologist and environmental geoscientist with more than 8 years' experience in the environmental field, and is a licensed Professional Geoscientist (P.Geo.) in Ontario. She obtained a Master of Science (M.Sc.) in 2010 from the University of Waterloo and has worked in the Hydrogeological and Environmental fields since then.

This report was reviewed by Ms. Heather Jaggard, M.Sc., P.Geo. Ms. Jaggard is a hydrogeologist and environmental geoscientist with more than 9 years in the environmental field and is a licensed Professional Geoscientist (P.Geo.) in Ontario. She obtained a Master's of Science (M.Sc.) in 2012 from Queen's University in Kingston, and is a Qualified Person (QP) registered with the Ontario MECP. She has worked in the Hydrogeological and Environmental fields since that time. In her professional career for the past few years, Ms. Jaggard has completed numerous hydrogeological assessments and modelling works for land development sites. Environmental site assessments and preparation of submissions for PTTW have been part of her routine assignments.

9. References

- Chapman, L.J. and Putnam, D.F., 1984. The Physiography of Southern Ontario, Ontario Geological Survey, Special Volume 2, 270p.
- Conservation Ontario. 2013. Hydrogeological Assessment Submissions Conservation Ontario Guidelines to Support Development Applications. June.
- Corporation of the City of London. 2019. Design Specifications & Requirements Manual. Updated August 2019.
- Dillon Consulting Limited and Golder Associates Ltd. (Dillon and Golder). 2004. Middlesex-Elgin Groundwater Study, Final Report, submitted to Middlesex and Elgin Counties.
- Freeze, R. A. and J.A. Cherry. 1979. Groundwater. Prentice-Hall Inc. New Jersey. 604 pp
- Goff, K and D.R. Brown, 1981. Ground-Water Resources Summary. Thames River Basin Water Management Study Technical Report. Ontario Ministry of the Environment, Water Resources Report 14.
- Hewitt D. F. 1972. Paleozoic Geology of Southern Ontario, Ontario Div. Mines, GR105, Map 2254.
- McCabe, G.J., and Markstrom, S.L., 2007. A monthly water-balance model driven by a graphical user interface: U.S. Geological Survey Open-File report 2007-1088, 6 p.
- Ministry of the Environment: Water Well Records. https://www.ontario.ca/environment-and-energy/map-well-records.
- Ministry of the Environment (MOE). 2001. Groundwater Studies 2001/2002, Technical Terms of Reference
- Ministry of the Environment (MOE). 2008. Technical Rules: Assessment Report, Clean Water Act, 2006
- Ontario Department of Mines. 1978. St. Thomas Sheet, Southern Ontario, Bedrock Topography Series, Map P 482.
- Ontario Geological Survey (OGS). 2010. Surficial geology of Southern Ontario, Miscellaneous Release--Data 128-REV.
- Ontario Geological Survey (OGS). 2011. Bedrock Geology of Ontario, 1:250 000 scale, Miscellaneous Release Data 126-Revision 1.
- Ontario Geological Survey (OGS). 2000. Quaternary geology, seamless coverage of the Province of Ontario; Ontario Geological Survey, Data Set 14. Revised.
- Stantec Consulting Ltd. 2022. Conceptual SWM Strategy, Hunter Property 1598 Richmond Street (dated May 16, 2022).
- Thames-Sydenham and Region Source Protection Committee. 2011. Upper Thames River Source Protection Area, Approved Updated Assessment Report. 12 August.

Date: June 14, 2022

10. General Limitations

The information presented in this report is based on a limited investigation designed to provide information to support an assessment of the current environmental conditions within the subject property. The conclusions and recommendations presented in this report reflect Site conditions existing at the time of the investigation. Consequently, during the future development of the property, conditions not observed during this investigation may become apparent. Should this occur, EXP Services Inc. should be contacted to assess the situation, and the need for additional testing and reporting. EXP has qualified personnel to provide assistance in regard to any future geotechnical and environmental issues related to this property.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the engineering profession. It is intended that the outcome of this investigation assist in reducing the client's risk associated with environmental impairment. Our work should not be considered 'risk mitigation'. No other warranty or representation, either expressed or implied, is included or intended in this report.

The comments given in this report are intended only for the guidance of design engineers. The number of test holes required to determine the localized underground conditions between test holes affecting construction costs, techniques, sequencing, equipment, scheduling, etc. would be much greater than has been carried out for design purposes. Contractors bidding on or undertaking the works should in this light, decide on their own investigations, as well as their own interpretations of the factual borehole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

EXP Services Inc. should be retained for a general review of the final design and specifications to verify that this report has been properly interpreted and implemented. If not afforded the privilege of making this review, EXP Services Inc. will assume no responsibility for interpretation of the recommendations in this report

This report was prepared for the exclusive use of **Auburn Developments** and may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Appendix A - Drawings

770

770-

Approximate Site Boundary Bedrock Surface Elevation in a Well or Test Hole (feet)

Contours on Bedrock Surface (feet)

Hunter Farm Development

Marion Street, Dorchester, Ontario

Bedrock Topography

Prepared By: K.D.

Reviewed By: H.B.

EXP Services Inc.

15701 Robin's Hill Road, London, ON, N5V 0A5

SEPTEMBER 2021

1:20,000

PROJECT NO. LON-21008138-A0

Image Source: Dreimanis, A., Vagners, U.J., and Pinder, G.F., 1968. St. Thomas Sheet, Southern Ontario, Bedrock Topography Series; Ontario Geological Survey, Preliminary Map No. P.482, 1:50,000.

CROSS SECTION A-A'

CROSS SECTION B-B'

CROSS SECTION C-C'

Hydrogeological Assessment

Hunter Farm Development

Marion Street, Dorchester, Ontario

Hydrogeological Assessment

Hunter Farm Development

Marion Street, Dorchester, Ontario

Appendix B – Development Plan

——— SITE BOUNDARY

VEGETATION COMMUNITY

NUMBER	ELC CODE	Description
1	CUM1	Mineral Cultrual Meadow
2	MAS3	Organic Shallow Marsh
3	SWC3	White Cedar Organic Coniferous Swamp
4	CUW1	Mineral Cultrual Woodland
5	MAS	Shallow Marsh
6	MAMS/CUM1	Mineral Meadow Marsh / Mineral Cultrual Meadow
7	CUM1	Mineral Cutural Meadow
8	MAM2	Mineral Meadow Marsh
9	CUM1	Mineral Cutural Meadow
10		Residential Farmyard

NATURAL HERITAGE REPORT HUNTER SUBDIVISION DORCHESTER, ONTARIO

THIS FIGURE IS SCHEMATIC ONLY AND TO BE READ IN CONJUNCTION WITH ACCOMPANYING TEXT.

BING IMAGERY USED FOR ILLUSTRATION

PURPOSES ONLY AND NOT TO BE USED FOR MEASUREMENTS. ALL LOCATIONS ARE APPROXIMATE.

DEVELOPMENT PLAN

ıwn	Scale
DCH	AS SHOWN
ecked	Project No. 48975-100
e May 16/22	Rev No.

FIGURE 8

BING IMAGERY AS OF JANUARY 18 - 2022 (IMAGE DATE UNKOWN); MRN LIO DATA, WATER BODIES AND WATER COURSES, 2022; AND CONCEPT PLAN PROVIDED BY STANTEC, AUTOCAD FILE "cad_161414095_20220513_draft_plan.dwg", MAY 13 - 2022.

Appendix C – Scoping Meeting Notes (April 20, 2022)

From: <u>Stefanie Pratt</u>

To: Heather Jaggard; John Bice; Stephen Stapleton
Cc: Jenna Allain; Karen Winfield; Kelli Dobbin
Subject: Re: 1598 Richmond Street, Dorchester, Thames Centre

Subject: Re: 1598 Richmond Street, Dorchester, Ti Date: Wednesday, April 20, 2022 9:01:32 PM

Attachments: <u>ATT00001.bmp</u>

ATT00002.bmp ATT00004.png ATT00005.png

Hi Stephen,

As noted in John's email below, we will not be requiring a TOR for this project as it is nearing completion and would not be a good use of resources for yourselves nor us. We will also not be accepting draft reports at this time. We will await the final reports and accept the package as a whole for review.

While we understand that the EIS was scoped, please be advised that future projects should be fully scoped for EIS and Hydrog in advance of undertaking the required monitoring periods. We have worked with Heather on many projects and are typically comfortable with the scope of work proposed, however it is beneficial for all to have a clear understanding of the site and have the opportunity to provide feedback and input early on.

We will await your formal submission to the municipality and provide feedback at that time.

Kind Regards,

Stefanie Pratt

Planning Coordinator 1424 Clarke Road London, ON N5V 5B9 t: 519-451-2800 ext. 430 e: pratts@thamesriver.on.ca

>>> Stephen Stapleton <sstapleton@auburndev.com> 2022-04-20 5:48 PM >>>

John we have a reputable hydro engineer and a reputable developer that have done these studies for years on many projects..we don't need to waste time of ToR. We will send you our draft reports.

Get Outlook for Android

From: John Bice

Sent: Wednesday, April 20, 2022 11:40:54 AM

To: Heather Jaggard

Heather.Jaggard@exp.com>

Cc: Jenna Allain <AllainJ@thamesriver.on.ca>; Karen Winfield <WinfieldK@thamesriver.on.ca>; Kelli Dobbin

<Kelli.Dobbin@exp.com>; Stefanie Pratt <PrattS@thamesriver.on.ca>; Stephen Stapleton

<sstapleton@auburndev.com>

Subject: RE: 1598 Richmond Street, Dorchester, Thames Centre

Hi Heather,

My last email was rather vague, apologies and I can clarify ToR requirements for you as well as requirements moving

forward. Typically we are looking for a formal ToR letter submission that lays out scope, summary of work to date, locations of monitoring wells, etc. in a formal letter submission. We would like to see this completed in conjunction with the EIS ToR for consistency.

Normally, we would take this ToR and have it reviewed by internal staff. However, since we are currently without a Hydrogeologist on staff we have been sending ToR's to a third party (along with the final study submissions).

Since you are already so far in the process we are not going to be asking for a ToR as you will be submitting the final study within the next month or so. We will await this study and send it for third party review. Apologies for the confusion here. In the future we would prefer to see a ToR near the beginning of the study to ensure consistency with supplementary requirements.

Kind Regards,

John Bice

John Bice Land Use Planner Upper Thames River Conservation Authority (UTRCA) t: <u>519-451-2800</u> ext. 228 e: bicej@thamesriver.on.ca

>>> Heather Jaggard <Heather.Jaggard@exp.com> 20/04/2022 11:15 AM >>> Hi John,

Please specify what exactly you require as a 'formal TOR'. I have only ever completed a HydroG scoping meeting followed by an email summary of study components discussed.

Is the external reviewer looking for a letter memo summarizing the study components completed to date?

Please clarify and I can provide.

Thank you.

Heather Jaggard, M.Sc., P.Geo., QP

EXP | Hydrogeologist, Project Manager

t: +1.226.616.0748 | m: +1.905.977.9030 | e: <u>heather.jaggard@exp.com</u>

exp.com | legal disclaimer

keep it green, read from the screen

From: John Bice

Sent: Wednesday, April 20, 2022 10:57 AM

To: Heather Jaggard

Heather.Jaggard@exp.com>

Cc: Jenna Allain <AllainJ@thamesriver.on.ca>; Karen Winfield <WinfieldK@thamesriver.on.ca>; Kelli Dobbin <Kelli.Dobbin@exp.com>; Stefanie Pratt <PrattS@thamesriver.on.ca>; Stephen Stapleton <sstapleton@auburndev.com>

Subject: RE: 1598 Richmond Street, Dorchester, Thames Centre

Good morning Heather,

Apologies for the delay in getting back to you and thank you for your patience. The UTRCA would require a formal submission of a TOR. Please see UTRCA's Hydro G Guidelines attached if you wish to submit a TOR.

Kind Regards,

John Bice

John Bice Land Use Planner Upper Thames River Conservation Authority (UTRCA) t: <u>519-451-2800</u> ext. 228 e: bicei@thamesriver.on.ca

>>> Heather Jaggard <<u>Heather.Jaggard@exp.com</u>> 11/03/2022 4:09 PM >>> Hi John,

Sure no problem. Please let me know if the following will suffice as a HydroG TOR.

The attached email includes the locations of the monitoring wells and on site surface water features. See below for a list of work completed so far. Monitoring started in May 2021 and is expected to go until May 2022.

- 38 test pits (part of Geotech report)
- 10 monitoring wells in 9 locations installed May 9-10, 2021
- 5 surface water (SW) stations installed May 27, 2021. Shallow piezometer and staff gauge installed at each.
- Monthly WLs since May 2021. To continue until at least May 2022
- 4 SWRT completed in May 2021
- 3 grain size samples
- 4 GW and 4 SW samples in September 2021. Second round scheduled for spring 2022
- Dataloggers in 4 wells and 4 piezometers and a barologger in one well. Installed in wells on May 18, 2021 and in piezometers on May 27, 2021. Will remain in place until at least May 2022.
- Monthly water balance completed
- Rough dewatering estimate completed
- MECP well record search done. Door to door survey scheduled for Spring 2022

Please let me know if you require any additional information at this time.

Thanks very much.

Heather

Heather Jaggard, M.Sc., P.Geo., QP

EXP | Hydrogeologist, Project Manager

t: +1.226.616.0748 | m: +1.905.977.9030 | e: <u>heather.jaggard@exp.com</u>

exp.com | legal disclaimer

keep it green, read from the screen

From: John Bice < bicej@thamesriver.on.ca > Sent: Thursday, March 10, 2022 8:43 AM

To: Heather Jaggard < <u>Heather.Jaggard@exp.com</u>>

Cc: Jenna Allain < AllainJ@thamesriver.on.ca>; Karen Winfield < WinfieldK@thamesriver.on.ca>

Subject: 1598 Richmond Street, Dorchester, Thames Centre

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Good morning Heather,

Apologies for the delay in getting back to you. Christine had forwarded me your request. We currently do not have a Hydrogeologist on staff to be able to answer any questions you may have in the scoping meeting.

We are completing this review through a third party. Typically we a receiving comments back ranging from 1 to 3 weeks. Could you complete a ToR for the Hydrogeological study, that way we can forward your ToR to our third party reviewer for comments?

Please let me know if this approach works for you?

Thank you,

John Bice

John Bice Land Use Planner Upper Thames River Conservation Authority (UTRCA) t: 519-451-2800 ext. 228

e: bicei@thamesriver.on.ca

<The contents of this e-mail and any attachments are intended for the named recipient(s). This e-mail may contain information that is privileged, confidential and/or exempt from disclosure under applicable law. If you have received this message in error, are not the named recipient(s), or believe that you are not the intended recipient immediately notify the sender and permanently delete this message without reviewing, copying, forwarding, disclosing or otherwise using it or any part of it in any form whatsoever.>

<The contents of this e-mail and any attachments are intended for the named recipient(s). This e-mail may contain information that is privileged, confidential and/or exempt from disclosure under applicable law. If you have received this message in error, are not the named recipient(s), or believe that you are not the intended recipient immediately notify the sender and permanently delete this message without reviewing, copying, forwarding, disclosing or otherwise using it or any part of it in any form whatsoever.>

This communication is intended for use by the individual(s) to whom it is specifically addressed and should not be read by, or delivered to, any other person. Such communication may contain privileged or confidential information. If you have received this communication in error, please notify the sender and permanently delete the communication. Thank you for your cooperation.

Appendix D – Borehole Logs

	_
ex	D,
	10

BH1/MW

Sheet 1 of 1 Auburn Developments Inc. CLIENT PROJECT NO. **LON-21008138-A0** PROJECT Hunter Farm DATUM <u>Geodetic</u> LOCATION Marion Street, Dorchester, ON DATES: Boring May 12, 2021 Water Level August 17, 2021 **SHEAR STRENGTH SAMPLES** STRATA M CONTENT S Field Vane Test (#=Sensitivity) WELL DEPTH ISTURE RECOVERY ▲ Penetrometer ■ Torvane Ν A NUMBER **VALUE STRATA** T P E Atterberg Limits and Moisture **DESCRIPTION** PLOT W_P W W_L (~m) **SPT N Value** × Dynamic Cone (mm) (%) 260.8 (blows) 10 -0 TOPSOIL - 300 mm 260.5 SILT - brown, trace to some clay, trace sand, trace gravel, compact, moist SS SA 1 350 14 11 SS SA₂ 450 20 16 -2 SS SA3 100 27 12 257.9 -3 **CLAYEY SILT TILL** - brown, trace sand, trace SA4 450 20 gravel, very stiff, damp SS 14 4 - some brown, dilatent silt layerin at 4.5 m bgs SS SA 5 400 23 21 -5 -6 - becoming hard near 6.0 m bgs SS SA 6 450 37 13 253.7 SILTY SAND TILL - brown, gravelly, well graded, dense, wet SS SA 7 30 450 8 -8 252.2 SAND - grey, fine to medium grained, trace silt, trace gravel, compact, wet -9 SS SA 8 350 21 16 251.2 End of borehole at 9.6 m bgs. -10 SAMPLE LEGEND ☑ AS Auger Sample ☑ SS Split Spoon ST Shelby Tube **NOTES** Rock Core (eg. BQ, NQ, etc.) VN Vane Sample 1) Borehole Log interpretation requires assistance by EXP before use by others. Borehole Log must be read in conjunction with EXP Report LON-21008138-A0. OTHER TESTS No significant methane gas detected upon completion of drilling. G Specific Gravity C Consolidation No significant metrialle gas detected upon completion of animing.
 bgs denotes below ground surface.
 Geodetic elevation surveyed by using a SOKKIA GCX2 Receiver.
 Water level, May 17, 2021: 4.71 m bgs (Elevation 256.18 m)

 July 20, 2021: 4.86 m bgs (Elevation 256.03 m)
 August 17, 2021: 4.92 m bgs (Elevation 255.97 m)

 CD Consolidated Drained Triaxial H Hydrometer S Sieve Analysis CU Consolidated Undrained Triaxial Y Unit Weight **UU Unconsolidated Undrained Triaxial** P Field Permeability **UC Unconfined Compression DS Direct Shear** K Lab Permeability WATER LEVELS Measured Artesian (see Notes)

0.0	
-CX	\mathbf{n}
0/1	\sim

BH2/MW

	CA	ь.	ΚE	:חנ	JL		. L	O.	,		Sheet 1 of 1
CL	IENT	Auburn Developments Inc.								PR	ROJECT NO. <u>LON-21008138-A0</u>
PR	OJECT	Hunter Farm								DA	ATUM <u>Geodetic</u>
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	В	oring	Ma	ıy 12, 20	021	Water Level <u>August 17, 2</u> 02
	Ę		ş				SAM	IPLES		мс	SHEAR STRENGTH S Field Vane Test (#=Sensitivity)
Ē	ШЫМ ДТ−ОZ		STRATA	W E L				R	N	MO-STURE	▲ Penetrometer ■ Torvane
DEPTH	Î	STRATA	Ā	t	Ţ	;	N U	Ö	VALUE	ŤĖ	, 100 , 200 kPa
н	Ö	DESCRIPTION	P	L OG	T Y P E	:	NUMBER	RECOVERY		E T	Atterberg Limits and Moisture WP W WL
(m bgs)	(~m)		P Q T	G			R	Ϋ́			● SPT N Value × Dynamic Cone
-o -	256.0	TOPOOL 400 mm	131 12 · 3	1	<u> </u>			(mm)	(blows)	(%)	10 20 30 40
-	255.6	TOPSOIL - 400 mm SILT - grey, trace to some sand, trace gravel,		0 0							
_₁		dilatent, very loose to compact, very moist to wet		Ш			SA 1	400	10	15	
-1				¥		3	SA I	400	10	15	
-					s	ss	SA 2	350	8	17	-
-2											
_					s	ss	SA 3	350	9	14	
-3					77						
-				:目:	Ms.	SS	SA 4	350	10	15	-
-4		- sandy seams encountered near 3.8 m bgs			S	33	SA 5	400	11	17	
							0, (0	100	''	''	
_	251.0				s	ss	SA 6	450	3	19	
- 5-	201.0	End of borehole at 5.0 m bgs.									
-] 1
-6											-
_											-
-7]-
_											-
-8											
_											
-9]
_											11
-10]
-											
-11											-
-											-
12							044	<u> </u>	FOEND		
NOT	ES					\dashv	\boxtimes A	AS Aug	EGEND jer Samp	ole 🛮	SS Split Spoon ST Shelby Tube
1) B	 orehole Lo	og interpretation requires assistance by EXP before u						Rock C ER TE	ore (eg. STS	BQ, NQ	Q, etc.) VN Vane Sample
2) N	o significa	og must be read in conjunction with EXP Report LOI int methane gas detected upon completion of drilling	n-∠10(JO138-	AU.		G S		Gravity		Consolidation D Consolidated Drained Triaxial
3) by 4) G	eodetic el	s below ground surface. evation surveyed by using a SOKKIA GCX2 Receive , May 17, 2021: 1.10 m bgs (Elevation 255.01 m)	r.				S Si	eve Ar	nalysis	Cl	U Consolidated Undrained Triaxial
۷۱ (ن	alei ievei	, May 17, 2021: 1.10 m bgs (Elevation 255.01 m) July 20, 2021: 0.97 m bgs (Elevation 255.14 m) August 17, 2021: 1.12 m bgs (Elevation 254.99 m)					P Fi		rmeability	y UC	U Unconsolidated Undrained Triaxial C Unconfined Compression
		August 17, 2021. 1.12 III bgs (Elevation 254.99 m)	1					ab Perr ER LE	neability	DS	S Direct Shear
						- 1		LK LE		▼ N4.	leasured Ā Artesian (see Notes)

0.0	
ex	D.
1	1

BH3/MW

		Г. ВО	KE	:пс	JL	_E		O.	•		Sheet 1 of 1
CL	IENT	Auburn Developments Inc.								_ PR	ROJECT NO. <u>LON-21008138-A0</u>
PR	ROJECT	Hunter Farm								DA	ATUM <u>Geodetic</u>
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	: В	oring	Ma	y 12, 20	021	Water Level August 17, 20
₽	ELEVAT-OZ		STRATA	W E L L			SAM	IPLES R	N	MO-STURE	SHEAR STRENGTH S Field Vane Test (#=Sensitivity) Penetrometer Torvane
DEPTH	A T	STRATA	Î	Ł	;	Ţ	N U M	RECOVERY	VALUE	J E	, 100 , 200 kPa
п	Ņ	DESCRIPTION	P Q T	L OG	É	T P E	NUMBER	Ě		ET	Atterberg Limits and Moisture W _P W W _L
(m bgs)	(~m) 256.0		우				K	-	(blows)	(%)	SPT N Value
-0 -	255.8	TOPSOIL - 280 mm	7/1/2··7	<i>i i</i>				(,	(blows)	(70)	
-		SAND - brown, fine to medium grained, trace to some silt, trace gravel, loose to compact, very									
-1		moist to wet				SS	SA 1	150	5	14	-
-											-
-2						SS	SA 2	400	8	24	
-						SS	SA 3	150	14	22	-
-3		- some grey, stiff, clayey silt layering encountered				22	SA 4	450	11	18	-
-		at 3.15 m bgs - becoming grey, compact and wet at 3.3 m bgs				00	0.7.4	130	''		-
- 4						SS	SA 5	450	26	13	
-	251.3	SANDY SILT - grey, trace gravel, compact, very				SS	SA 6	450	19	15	-
- 5		moist to wet									
-	250.2					SS	SA 7	450	23	22	<u> </u>
-6		End of borehole at 5.8 m bgs.									-
-											-
-7											-
-											-
-8											-
-											
-9											
_10											
10 -											
-11											
-											
12											
NO	TES						$\boxtimes A$	AS Aug	EGEND Jer Samp		SS Split Spoon ST Shelby Tube
1) B 2) N 3) b 4) G	orehole La Borehole La Borehol	og interpretation requires assistance by EXP before og must be read in conjunction with EXP Report LOI ant methane gas detected upon completion of drilling is below ground surface. evation surveyed by using a SOKKIA GCX2 Receive 1, May 17, 2021: 1.28 m bgs (Elevation 254.79 m) July 20, 2021: 1.58 m bgs (Elevation 254.49 m) August 17, 2021: 1.70 m bgs (Elevation 254.37 m)	N-21Ó(er.				OTHI G SI H H S Si Y UI P Fi K La	ER TE pecific ydrome eve Ar nit We eld Per ab Perr	Gravity eter alysis ight meability neability	C CI CI UI y U(Q, etc.)
								ER LE		▼ N4.	leasured 🚡 Artesian (see Notes)

0.0	
-CX	\mathbf{n}
0/1	\sim

BH4/MW

					<i>_</i> _				•		Sheet 1 of 1
CL	IENT	Auburn Developments Inc.								PR	ROJECT NO. LON-21008138-A0
PR	OJECT	Hunter Farm									ATUM Geodetic
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	В	oring	Ма	y 11, 20)21	Water Level August 17, 202
			Π_					PLES			SHEAR STRENGTH
	ШЫР∀Т-О Z		ST RATA	w			SAIVI			MO-SHURE	S Field Vane Test (#=Sensitivity)
DEPTH	V A		<u>K</u>	W E L			N	RECOVERY	N	Į N Į Į	▲ Penetrometer ■ Torvane
뒵	Ī	STRATA	Å		Y	,	Ù	Ö	VALUE	Ρ̈́Ρ̈́	100 200 kPa
	N	DESCRIPTION	P	L OG	P	•	ZUEBER	Ě		È'	Atterberg Limits and Moisture W _P W W _L
(m bgs)	(~m)		P Q 	G			R	Ŷ			● SPT N Value × Dynamic Cone
-0 -	256.0							(mm)	(blows)	(%)	10 20 30 40
٥	255.8	TOPSOIL - 230 mm	XXX 7/7: 7/	<i>B B</i>							
-		FILL - SAND - brown/grey/black, trace silt, trace gravel, topsoil inclusions, building debris, loose,	\bowtie								
-1		very moist	\bowtie			SS	SA 1	350	6	21	
-	254.4		\bowtie	Y							
		SAND and GRAVEL - grey, trace silt, well	60.000			SS	SA 2	400	17	22 10	
-2	253.9	graded, compact, wet SAND - brown, some gravel, trace silt, compact,									
-		wet				ss	SA 3	450	25	14	
-3					77						
						SS	SA 4	450	13	21	• 0
- 4				ŀ∄:							
-				[:目:	77						
-5	251.0					SS	SA 5	300	10	16	<u> </u>
ļ		End of borehole at 5.0 m bgs.									
-											
-6											
-											
_											
-7											1
-											
-8											-
-9											
-											-
-10											
											11
-11											
-											-
4.0											
1/2						_			EGEND Jer Samp	ole 🕏	SS Split Spoon ST Shelby Tube
1) B		og interpretation requires assistance by EXP before ι	ise hv	othere					ore (eg.		
В	orehole Lo	og must be read in conjunction with EXP Report LON	N-2100	08138-	A0.			ER TE	STS Gravity	<u> </u>	Consolidation
∠) N 3) b	o significa gs denotes	Int methane gas detected upon completion of drilling below ground surface. evation surveyed by using a SOKKIA GCX2 Receive	-				HH	/drome	eter	CI	D Consolidated Drained Triaxial
4) G 5) W	eodetic el /ater level	, May 17, 2021: 1.52 m bgs (Elevation 254.59 m)	r.					eve An nit We			U Consolidated Undrained Triaxial U Unconsolidated Undrained Triaxial
,		July 20, 2021: 1.38 m bgs (Elevation 254.73 m) ugust 17, 2021: 1.51 m bgs (Elevation 254.60 m)					P Fi	eld Pei	rmeability	y UC	C Unconfined Compression
		agast, 2021. 1.01 III bgs (Elevation 204.00 III)						ıb Perr ER LE	neability VFLS	DS	S Direct Shear
								∟r ∟∟ ∖ppare		▼ Me	leasured 🛕 Artesian (see Notes)

0.0	
ex	D.
1	1

BH5/MW

Sheet 1 of 1

Auburn Developments Inc. CLIENT PROJECT NO. **LON-21008138-A0** PROJECT Hunter Farm DATUM <u>Geodetic</u> LOCATION Marion Street, Dorchester, ON DATES: Boring May 12, 2021 Water Level August 17, 2021 **SHEAR STRENGTH SAMPLES** STRATA M CONTENT S Field Vane Test (#=Sensitivity) Ä DEPTH ISTURE RECOVERY ▲ Penetrometer ■ Torvane Ν A Ł NUMBER **VALUE STRATA** T P E **Atterberg Limits and Moisture DESCRIPTION** PLOT WP W WL (~m) × Dynamic Cone SPT N Value (mm) 257.6 (blows) 20 40 10 -0 257.4 TOPSOIL - 280 mm CLAYEY SILT - grey, trace sand, trace gravel, firm moist SS SA 1 450 6 256.3 SANDY SILT - grey, some gravel, compact, SA₂ 450 5 -2 255.1 SS SA₃ 400 13 SAND - grey, fine to medium grained, some silt to silty, compact, wet -3 SA4 400 SS 31 254.2 -some silt layering encountered at 3.3 m bgs SILT TILL - grey, some sand to sandy, trace gravel, dense to very dense, moist 4 SS SA 5 450 38 SS SA 6 450 50* 252.6 End of borehole at 5.0 m bgs. -6 -8 9 10 SAMPLE LEGEND ☑ AS Auger Sample ☑ SS Split Spoon ST Shelby Tube Rock Core (eg. BQ, NQ, etc.) VN Vane Sample Borehole Log interpretation requires assistance by EXP before use by others. Borehole Log must be read in conjunction with EXP Report LON-21008138-A0.
 No significant methane gas detected upon completion of drilling. OTHER TESTS G Specific Gravity C Consolidation bgs denotes below ground surface. CD Consolidated Drained Triaxial H Hydrometer 5) bgs deribtes below ground surface.
4) * denotes 50 blows per less than 150 mm split spoon sampler penetration.
5) Geodetic elevation surveyed by using a SOKKIA GCX2 Receiver.
6) Water level, May 17, 2021: 0.90 m bgs (Elevation 256.87 m)
July 20, 2021: 0.81 m bgs (Elevation 256.96 m)
August 17, 2021: 0.95 m bgs (Elevation 256.82 m) S Sieve Analysis CU Consolidated Undrained Triaxial Y Unit Weight **UU Unconsolidated Undrained Triaxial** P Field Permeability **UC Unconfined Compression DS Direct Shear** K Lab Permeability WATER LEVELS Measured Artesian (see Notes)

	_
ex	D,
	10

BH6/MW

Sheet 1 of 1

Auburn Developments Inc. CLIENT PROJECT NO. **LON-21008138-A0** PROJECT Hunter Farm DATUM Geodetic **DATES: Boring** May 11, 2021 LOCATION Marion Street, Dorchester, ON Water Level August 17, 2021 **SHEAR STRENGTH** SAMPLES STRATA M CONTENT S Field Vane Test (#=Sensitivity) DEPTH ISTURE RECOVERY **▲** Penetrometer ■ Torvane Ν Ą Ł NUMBER **VALUE STRATA** T P E **DESCRIPTION Atterberg Limits and Moisture** PLOT W_P W W_L (~m) **SPT N Value** × Dynamic Cone (mm) (%) 268.1 (blows) 10 20 40 -0 267.9 TOPSOIL - 150 mm SILTY SAND - brown, trace gravel, loose, very SS SA 1 300 6 11 266.7 SILT - brown, some sand, trace gravel, dilatent, sand laminations, compact, moist to very moist SS SA₂ 300 13 16 -2 265.9 CLAYEY SILT - brown, trace to some sand, trace gravel, sand laminations, moist to very SS SA3 50 28 15 moist, very stiff to dense -3 -some very moist silt layering encountered at 2.9 SA4 400 SS 18 15 4 SS SA₅ 400 23 17 263.6 SANDY SILT - brown, trace gravel, moist, moist SS SA₆ 450 16 14 -5 262.5 SAND - brown, fine to medium grained, trace silt, trace gravel, loose, moist -6 SS SA 7 400 9 7 -some silt layering encountered at 7.8 m bgs 260.2 8 7 SA8 SS 450 8 CLAYEY SILT - brown, trace sand, trace gravel, stiff, moist 259.5 SAND - brown, fine to medium grained, trace to some silt, trace gravel, compact, moist -9 SA9 SS 400 6 12 257.9 CLAYEY SILT - grey, trace sand, trac gravel, soft, very stiff, very moist to wet SS SA 10 400 19 13 -11 256.9 End of borehole at 11.1 m bgs. SAMPLE LEGEND ☑ AS Auger Sample ☑ SS Split Spoon ST Shelby Tube **NOTES** Rock Core (eg. BQ, NQ, etc.) VN Vane Sample 1) Borehole Log interpretation requires assistance by EXP before use by others. Borehole Log must be read in conjunction with EXP Report LON-21008138-A0. OTHER TESTS No significant methane gas detected upon completion of drilling. G Specific Gravity C Consolidation No significant methale gas detected upon completion of anims.
 bgs denotes below ground surface.
 Geodetic elevation surveyed by using a SOKKIA GCX2 Receiver.
 Water level, May 17, 2021: 9.27 m bgs (Elevation 258.87 m)

 July 20, 2021: 9.53 m bgs (Elevation 258.61 m)
 August 17, 2021: 9.55 m bgs (Elevation 258.59 m)

 CD Consolidated Drained Triaxial H Hydrometer S Sieve Analysis CU Consolidated Undrained Triaxial Y Unit Weight **UU Unconsolidated Undrained Triaxial** P Field Permeability **UC Unconfined Compression DS Direct Shear** K Lab Permeability WATER LEVELS Measured Artesian (see Notes)

	_
ex	D,
	10

BH7A/MW

	CA	ВС	JKE	:HC)L		.OC	7		Sheet 1 of 1
CL	ENT	Auburn Developments Inc.							PR	ROJECT NO. <u>LON-21008138-A0</u>
PR	OJECT	Hunter Farm							DA	ATUM <u>Geodetic</u>
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	Boring	<u> Ma</u>	ay 11, 20	021	Water Level August 17, 20
_	E L E		S	w		SAI	/PLES	;	M C	SHEAR STRENGTH S Field Vane Test (#=Sensitivity)
DEP PTH	M-M>40z	STRATA	S R A T A	W E L	Ţ	NU	RECOVERY	N VALUE	MO-STURE	▲ Penetrometer ■ Torvane 100 200 kPa
		DESCRIPTION	P Q	L O G	T P E		E R Y		RT	Atterberg Limits and Moisture W _P W W _L
bgs)	(~m) 264.3		"				(mm)	(blows)	(%)	● SPT N Value X Dynamic Cone 10 20 30 40
۲°	264.0	TOPSOIL - 300 mm	7 <u>/ /</u> · · 7							
1		SANDY SILT - brown, trace gravel, loose to compact, very moist			// ss	S SA 1	50	5	24	-
	262.9	SILT - grey, trace to some sand, trace gravel, dilatent. loose, wet	<u> </u>	_ ¥		S SA 2	400	7	20	-
2					22 22					
3	261.4	CLAYEY SILT - grey, trace sand, trace gravel,			22 22	S SA 3		10	18	
		saturated silt lamination, stiff, moist			SS	S SA 4	450	14	19	-
1	260.3	SILT - grey, trace sand, trace gravel, dilatent, loose, wet								
5	258.7				S	S SA 5	400	11	20	
5	200.1	SILT TILL - grey, some sand, trace gravel, saturated sand lamination, thin clay laminations, compact, moist			S	S SA 6	400	27	9	
7										
3	256.2	End of how hall and Od on how			ss	SA 7	450	29	10	φ
		End of borehole at 8.1 m bgs.								
										-
0										_
										-
11										
ا 1								<u></u>		
) Bo Bo) No) bo) G	orehole Lo o significa gs denotes eodetic el	og interpretation requires assistance by EXP before by must be read in conjunction with EXP Report LC ant methane gas detected upon completion of drilling is below ground surface. evation surveyed by using a SOKKIA GCX2 Receive, May 17, 2021: 0.64 m bgs (Elevation 263.69 m))N-2100 g. ⁄er.	others 08138-	i. A0.	OTH GS HH SS	AS Aug Rock C IER TE	Gravity eter nalysis	BQ, NG C CI Cl	ST Shelby Tube Q, etc.) ST Shelby Tube VN Vane Sample Consolidation Consolidated Drained Triaxial U Consolidated Undrained Triaxial U Unconsolidated Undrained Triaxial
	А	Úly 20, 2021: 1.07 m bgs (Elevation 263.26 m) ugust 17, 2021: 1.35 m bgs (Elevation 262.98 m))			P F K L WA	ield Pe	rmeability meability VELS	y UG	C Unconfined Compression S Direct Shear Artesian (see Notes)

ex	n
0/1	\sim

BH7B/MW

7	,		-1 1	<i>_</i>						Sheet 1 o
IENT	Auburn Developments Inc.							PF	ROJECT NO. I	_ON-21008138-A0
OJECT	Hunter Farm								ATUM Geodeti	
	N Marion Street, Dorchester, ON		DAT	FS: F	Borina	Ma	y 11, 20		·	r Level August 1
	Wallon Street, Dorchester, Or		T							
ELEVAT	STRATA	ST R A T A	W E L L	ı		RECOVERY	N VALUE	MO-STURE		STRENGTH Test (#=Sensitivity ■ Torvane 200 kPa
ON N	DESCRIPTION	P		T Y P E	M B	Ĭ		ĔŤ	Atterberg Lim	nits and Moisture
N		[LOG	E	NUMBER	Ŗ		-	W _P	w w _L
(~m)		¥			'`	-			SPT N Value	× Dynamic Cone
264.3						(mm)	(blows)	(%)	10 20	30 40
264.0	TOPSOIL - 300 mm	7/1/2. 7								+++++++
	SANDY SILT - brown, trace gravel, loose to compact, very moist									
262.9										
	SILT - grey, trace to some sand, trace gravel, dilatent, loose, wet									
261.4										
201.4	CLAYEY SILT - grey, trace sand, trace gravel,	1	: <u> </u> :							
	saturated silt lamination, stiff, moist									
260.2		1/1/2								
	SILT - grey, trace sand, trace gravel, dilatent, loose, wet									
258.7	SILT TILL grove come conditions are series	02:12	1							
	SILT TILL - grey, some sand, trace gravel, saturated sand lamination, thin clay laminations,									
	compact, moist									
]							
		1913								
256.2										
	End of borehole at 8.1 m bgs.	10/2012	1						T	
	•				SAM	PLE LI	EGEND			
<u>ES</u>			_				ger Samp ore (eg.		SS Split Spoon	ST Shelby TubVN Vane Samp
	Log interpretation requires assistance by EXP before Log must be read in conjunction with EXP Report L0					ER TE	, 0	DQ, 140	x, 0.0. <i>j</i>	w viv valie Gallip
o signific	cant methane gas detected upon completion of drillir	איב וטנ ig.	JU 130-	AU.	GS	pecific	Gravity		Consolidation	nad Triavis!
eodetic e	es below ground surface. elevation surveyed by using a SOKKIA GCX2 Receiv	/er.				ydrome eve Ar			D Consolidated Drai U Consolidated Und	
ater leve	el, May 17, 2021: 0.57 m bgs (Elevation 263.75 m) July 20, 2021: 1.10 m bgs (Elevation 263.22 m				γ υ	nit We	ight	Ū	U Unconsolidated U	ndrained Triaxial
	August 17, 2021: 1.39 m bgs (Elevation 262.93 m)	,					rmeability neability		C Unconfined Comp S Direct Shear	pression
					WAT	ER LE	VELS		_	
					I \(\subseteq \)	Appare	nt	▼ M	leasured 本	Artesian (see Note

	_
ex	D,
	10

BH8/MW

	CA	БО	KE	:п(JL	-E		O.	•		Sheet 1 of 1
CL	IENT	Auburn Developments Inc.								PR	ROJECT NO. <u>LON-21008138-A0</u>
PR	OJECT	Hunter Farm								DA	ATUM <u>Geodetic</u>
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	В	oring	Ma	ıy 11, 20	021	Water Level August 17, 202
D	МТМ		STRATA	w			SAM	IPLES		MO-STURE	SHEAR STRENGTH S Field Vane Test (#=Sensitivity)
DEPTH	A A	STRATA	À	W E L	١,	-	N	RECOVERY	N VALUE	s T T E	▲ Penetrometer ■ Torvane 100 200 kPa
H	4T-0Z	DESCRIPTION			I Y		ZUEBEC	V V		U N E T	Atterberg Limits and Moisture
			P Q 	LOG	E		E	Ŕ			W _P W W _L
(m bgs)	(~m) 257.5		T					(mm)	(blows)	(%)	● SPT N Value × Dynamic Cone 10 20 30 40
0 -	257.3	TOPSOIL - 250 mm	<u> </u>	<i>D E</i>	П						
- 	256.7	CLAYEY SILT - brown, some sand to sandy, trace gravel, stiff, moist	} }	\mathbf{Y}	77						-
-1		SILT TILL - brown, trace sand, trace gravel, compact, moist to wet				SS	SA 1	450	21	11	
-		-some sand layering encountered at 1.2 m bgs									
-2	055.0					SS	SA 2	450	18	10	
-	255.2	SAND - brown, some silt chunks, trace gravel,	d' hd'			SS	SA 3	350	17	9	
-3	254.6	compact, wet	ටන්. 12		M		0, (0				
٥		SILT TILL - brown, some sand to sand, trace gravel, thin wet sand laminations, compact, very		[]		ss	SA 4	350	28	13	0 •
		moist to wet		[:目:							
- 4						SS	SA 5	350	41	14	
-		- becoming grey and dense at 4.4 m bgs				-	SA 6	450	45	10	
- 5-	252.5	End of borehole at 5.0 m bgs.	J.		4	33	5A 0	450	45	10	
-											
6											
_											
-7											
-											1
8] 7
-											
-9											-
-											-
-10											
-											-
-11											
''											
											11
12									EGEND		SS Split Spoon Type
1) B		og interpretation requires assistance by EXP before	ise hv	others			□ F	Rock Č	ger Samp ore (eg.	ле ഥ BQ, NQ	SS Split Spoon ST Shelby Tube VN Vane Sample
ÉВ	orehole L	og must be read in conjunction with EXP Report LOI int methane gas detected upon completion of drilling	N-21Ó0					ER TE	STS Gravity	С	Consolidation
3) bo	gs denote: leodetic el	s below ground surface. evation surveved by using a SOKKIA GCX2 Receive					HH	ydrome		CI	D Consolidated Drained Triaxial U Consolidated Undrained Triaxial
5) W	/ater level	, May 17, 2021: 0.62 m bgs (Elevation 257.03 m) July 20, 2021: 0.56 m bgs (Elevation 257.09 m)	-				γ Uι	nit We		UL	U Unconsolidated Undrained Triaxial C Unconfined Compression
	А	ugust 17, 2021: 0.70 m bgs (Elevation 256.95 m)					K La	b Perr	neability		S Direct Shear
								ER LE		▼ N4.	leasured T Artesian (see Notes)

ex	n
0/1	\sim

BH9/MW

	CA	ВО	'NL	.п.	J L		.00	7		Sheet 1 of 1	
CL	IENT	Auburn Developments Inc.							PR	ROJECT NO. <u>LON-21008138-A0</u>	
PR	OJECT	Hunter Farm							DA	ATUM <u>Geodetic</u>	
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	Borin	g <u>Ma</u>	ay 11, 20	021	Water Level August 17, 202	
D	ELEVAT-OZ		STRATA	Ψ		SAI	MPLES		MO-STURE	SHEAR STRENGTH S Field Vane Test (#=Sensitivity) Penetrometer Torvane	
DEPTH	Å	STRATA	A A	W E L	Ţ	N	RECOVERY	N VALUE	S T T E U N	100 , 200 kPa	
н	o N	DESCRIPTION	P L O T	LOG	T Y P E	NUM BER	V E R		RT	Atterberg Limits and Moisture W _P W W _L	
(m bgs)	(~m) 266.1		우			K		(blows)	(%)	● SPT N Value × Dynamic Cone 10 20 30 40	
-0-	265.8	TOPSOIL - 300 mm	7/1/×. ·7/	4 6		+	()	(Siewe)	(///		
-		SILTY SAND - brown, trace gravel, dense, moist	1,1		77					-	
-1	264.8				s	S SA	1 300	30	11		
-		SAND - fine to medium grained, brown, trace to some silt, trace gravel, loose to compact, wet		¥	s	S SA 2	2 250	8	20	-	
- 2						S SA S	3 450	8	26		
-3						S SA	430	0	20		
-					S	SA 4	4 400	12	24	-	
- 4		- becoming grey near 4.0 m bgs									
-	004.4				S	S SA !	5 400	13	22	-	
- 5-	261.1	End of borehole at 5.0 m bgs.				-	- 100			}	
-		-									
-6											
-										-	
-7											
-										-	
- 8											
- 9											
-										-	
-10											
-											
-11											
										1	
12								EGEND ger Samp		SS Split Spoon ST Shelby Tube	
2) N 3) bo 4) G	1) Borehole Log interpretation requires assistance by EXP before use by others. Borehole Log must be read in conjunction with EXP Report LON-21008138-A0. 2) No significant methane gas detected upon completion of drilling. 3) bgs denotes below ground surface. 4) Geodetic elevation surveyed by using a SOKKIA GCX2 Receiver. 5) Water level, May 17, 2021: 1.40 m bgs (Elevation 264.84 m) July 20, 2021: 1.40 m bgs (Elevation 264.81 m) August 17, 2021: 1.61 m bgs (Elevation 264.60 m) August 17, 2021: 1.61 m bgs (Elevation 264.60 m) Rock Core (eg. BQ, NQ, etc.) OTHER TESTS G Specific Gravity H Hydrometer S Sieve Analysis V Unit Weight P Field Permeability K Lab Permeability K Lab Permeability WATER LEVELS ✓ Apparent ✓ Measured Ā Artesian (see Notes)										

ex	0.

TP1

PROJECT Hunter Farm PROJECT NO. LON-21008138-A0																					
CLIENT Auburn Developments Inc.																					
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	Excava	ation _	May 12	2, 2021				_ ۷	Vate	er L	Leve	el .				
	Ę		s			SAN	IPLES		B SHEAR STRENGTH U S Field Vane Test (#=Sensitivity)												
₽	шш		STRAT	WELL			R	N	Ľ				eld V tron					Sensi vane		ty)	
ОШР⊢Н	4 T-02	STRATA	Î	Ł	Ţ	Ņ	Ö	VALUE	₽	, 40 , 80 ķPa											
Н	ÖN	DESCRIPTION	l P	LOG	T P E	NUMBER	RECOVERY	(blows) or	DE NSI		Α	tter	berg			ts ar V		/loist	ure		
(\	(m)		卢	G		R	(mm)	RQD (%)		١.) SI	рт і	N Va	- ⊩		>—	┪ ̄	mic	Cor	16	
(m) -0 -	254.9	T0000H 500	17. 18. 12		<u> </u>		or (%)	1	(kN/m3)		- 	10		20			30	4		.• '	ot
L		TOPSOIL - 500 mm	1/. 3/./							Ħ					#	#	Ш	#	Ш		1]
L	054.4		7. 1. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.							Ħ	Ħ		Ш	\dagger	\sharp	#	Ш	#	Ш		<u> </u>
_	254.4	MARL - mixed peat, light grey, wet	17. 17. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19		\forall					H					\pm	\pm	Ш	#	Ш		┨.
			<u> </u>		 GE	3 SA 1				H	Ш	Ħ	Ш	\pm	\pm	\pm	Ш	Ш	Ш	Ħ	þ 134
-1			7 7 7		\Box					H	Н		Ш		\pm	\pm	Ш	\pm	Ш		
'			<u> </u>							H	\coprod	∄	\coprod	$\pm \parallel$	\pm	+	\coprod	#	\coprod	\coprod]
			1, 11,								+		H	+	${\mathbb H}$	+	Н	+	\mathbb{H}	+	$\left\{ \ ight]$
			77 7							H			Н		${\mathbb H}$	\mp	Н		П		17
-			77 77							H	H	H	H	H	Ħ	#	H	\mp	H	H	11
	252.9		1/ 1/							H	H	H	H	Ħ	#	#	Ħ	#	H	Ħ	11
-2	202.9	SAND and GRAVEL -grey, alluvial, loose, wet	0.000		abla					Ħ	Ħ		Ш	Ħ	#	#	Щ	#	Ш		11
-			0.00		X GE	SA 2				Ħ		c			#	#	Ш	#	Ш		11
-			0.0.0		\Box					H	Ш		Ш		\pm	\pm	Ш	\pm	Ш		1 1
_			0.0.0 0.0.0							H	H				\pm	\pm	Ш		Ш		1 1
-			0 0 0							H	H				\pm	\pm	Ш	\pm	Ш	+	-
-3	251.9	SAND - brown/grey, fine to medium grained,	ه م							H	$^{+}$			\pm	\pm	\pm	Ш		Ш		┨┤
-	251.6	loose, wet			X GE	3 SA 3				H	+			φ	${\mathbb H}$	+	Н	+	\mathbb{H}	+	
-		End of test pit at 3.3 m bgs.																			-
-																					
_																					
-4																					
_																					$\ \cdot\ $
-																					
_																					
-5-																					
NO	TES .							EGEND jer Samp	ole 🛭	s	S S	plit :	Spoo	on	ı	. ;	ST S	Shelb	y Tu	ıbe	
1) T	 est pit inte	erpretation requires assistance by EXP before use	by others	. Test	pit log	, 🗆 F	Rock C	ore (eg.				•						/ane			٠
2) T	est pit is b	ad in conjunction with EXP Report LON-21008138 assed on observations of the excavator resistance.			_4:	OTHER TESTS G Specific Gravity C Consolidation H Hydrometer CD Consolidated Drained Triaxial															
4) b	gs denote	red and water observed near 2.0 m bgs upon comp s below ground surface.		excav	ation.	S Si	eve Ar	nalysis	CI	U C	cons	solic	dated	d Un	ıdrai	ined	d Tria	axial			
5) G	eodelic el	evations surveyed using a SOKKIA GCX2 Receive	Π.			P Fi	nit We eld Pe	rmeability	y U	Сί	Jnco	onfir	ned (Com		drain essic		Triaxi	al		
							ab Perr ER LE	neability	D	SE)irec	t SI	hear								
							\ppare		▼ M	eas	sure	d		Ā		Arte	siar	ı (see	e No	tes)	

ex	p.

TP1A

PR	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0																			
CLIENT Auburn Developments Inc. DATUM Geodetic																				
		Marion Street, Dorchester, ON		DAT	ES:	Excava	ation _	May 12	 2, 2021				W	/ate	r L	eve	Ι_			
	Ę		s			SAN	IPLES		В							REN				
Ē	шш		STRATA	W			R	N	Į Ķ	♣ S Field Vane Test (#=Sensitive A Penetrometer ■ Torvane								vity)		
DEPTH		STRATA	🚡	WELL	Ţ	Ŋ	RECOVERY	VALUE	₽		40 , 80 kPa									
Ĥ	4T-02	DESCRIPTION	P	LOG	T P E	NUMBER	¥ E R	(blows) or	DE NS-		At	terk						oistu	re	
	(m)		Ļ	Ğ	-	Ŕ	Ý (mm)	RQD (%)	¦		e D	T N	Val	- ⊢	—≎	W	_	nic C	ono	
(m) -0 -	255.2						or (%)	1	(kN/m3)			10	Vai	20	<u>, </u>	30		40	one —	\perp
-		TOPSOIL - 300 mm	7							Ш	\pm	╁	†	Ħ		Ш				∄.
L	254.9	MARL - mixed peat, light grey, wet	717 7		\forall					Н	+	+	$^{+}$	$^{+}$		Н				┨.
			1, 11,		 GI	B SA 1				Н	+	+	+	${\mathbb H}$		${\mathbb H}$	+	Ш	+	Н
_			71 V		\triangle					H	\blacksquare	\blacksquare	H	H		H				\mathbb{H}^{-}
-			<u> </u>							Ħ	\parallel	\parallel	Ħ	$oxed{\dagger}$		#				
-1			1/2 1/2							Ħ	\parallel	\sharp	\dagger	Ħ		#		Ш		 −
-			71/7							Ш	\parallel	\parallel	Ħ	Ħ		Ш				╽-
-			<u> </u>							Ш	Ш	╽	Ш	Ш		Ш		Ш		╽-
-			7 7 7 7 7 7							Н	\pm	+	$^{+}$	$^{+}$		Ш				Ӈ-
-			71/7							H	+	+	+	+		H				H -
-2	253.2	SAND - brown/grey, fine to medium grained,	1,		Н					H	\blacksquare	\mathbb{H}	H	H		H	H			-
-		loose, wet			$\left\ \cdot \right\ _{G}$	B SA 2				H	\blacksquare	Ħ	Ħ	Ħ		Ħ				 -
_					\mathbb{N}					П	\parallel	\parallel	Ħ	Ħ		#				
_										Ш	\parallel	Ħ	Ħ	Ħ		\sharp				╽.
_										H	\pm	\pm	†	\parallel		\parallel		Ш		╽.
-3	252.2									Ш			\parallel	H		Ш				
Ĺ		End of test pit at 3.0 m bgs.																		
-																				
-																				-
-																				-
- 4																				-
-																				-
-																				-
-																				-
-																				-
5						SAM	 	 EGEND	<u> </u>	<u> </u>										
NO	TES					$\neg \boxtimes A$	AS Aug	ger Samp				lit S	роо	n				nelby ane S		
'n	nust be re	erpretation requires assistance by EXP before use land in conjunction with EXP Report LON-21008138	by others -A0.	. Test	pit lo	g oth	ER TE								L	⊒ VI	IN Võ	ai ie 3	amp	C
2) T 3) V	est pit is b /ater obse	pased on observations of the excavator resistance. Erved near 2.5 m bgs upon completion of excavation				HH	ydrome			Cor D Co				Dra	ine	d Tri	axia	l		
4) b	gs denote	s below ground surface. evations surveyed using a SOKKIA GCX2 Receive				S Si	, eve Ar nit We	nalysis	CI	U C	onso	olida	ated	Und	draiı	ned [·]	Tria			
, -		, 0				P Fi	eld Pe	rmeability neability	y U		ncor	nfine	ed C			ssior		, and		
						WAT	ER LE	VELS					cal							
								nt	▼ M	eası	ured	l		Ā	Α	۱rtes	ian	(see l	Notes	s)

ex	p.

TP2

PROJECT Hunter Farm PROJECT NO. LON-21008138-A0																				
	-	Auburn Developments Inc.									JM					14-2	100	013	<i>)-</i> —	
		Marion Street, Dorchester, ON		DAT	ES: E	Excava	ation _	May 12								eve	:I _			
	E		Т.				IPLES		В	Π	SHEAR STRENGTH									
	╙┸╙╱⋖┴─	STRATA	ST RA T	W E L	Ţ		RECOVERY	N VALUE	K	•	S I Pe	Fiel netr	d Va	eter	r		Γorv	ensit ⁄ane 80 ķl		y)
H	-ON	DESCRIPTION	A P		T Y P E	NUMBER	¥	(blows)	DE NS-	┢	At	terb	erg	40 Lir		s an		oistu		\dashv
			ļ	L O G	E	Ē		or RQD	S I					WP	, W	/ W	L_			
(m) -0 -	(m) 256.7						(mm) or (%)	(%)	Ť Y (kN/m3)											9
-	256.5	TOPSOIL - 250 mm	17 · 11·19							L	Ш	\parallel						Ш	Н	Ш.
_	256.2	SAND , brown, weathered, some silt to silty, loose, very moist			GE	SA 1				Ħ		\parallel					\dagger		H	\
<u> </u>		SILT TILL - brown/grey, trace gravel, compact, moist				SA 2													H	
-						5A 2				Ħ		\parallel					\parallel		H	
-1										Ħ									Ħ	Ш-
-										Ħ								Ш		Ш
-										Ħ		Ш		Ш				Ш	Ш	Ш.
-										H									\mathbf{H}	╽
-										H									+	H -
-2		becoming grow poor 2.0 m has								H	H	H	H	H				Ш	H	Щ-
-		- becoming grey near 2.0 m bgs								Ħ										Щ.
_										Ħ	Ш			Ħ				Ш	Ħ	Ш.
										Н								Ш	Н	Ш.
										H	\mathbb{H}	+	+	$^{+}$			+	Н	$^{+}$	Н
_										H	H	H	H	H				Н	H	H.
-3										Ħ	H	\blacksquare	H	H					Ħ	П
-										Ħ								Ш	Ħ	Ш.
	253.2									H										Ш
ŀ		End of test pit at 3.5 m bgs.																		
_																				
-4																				-
-																				
_																				
_																				
5			-					EGEND ger Samp		00	S Sp	lit C	noc	n			T 91	helby	Tul	<u> </u>
<u>NO1</u>		erpretation requires assistance by EXP before use b	v others	s Test	nit Ioo	_ □ F	Rock Č	ore (eg.				iii 3	μου					ane S		
ĺ'n	nust be re	ad in conjunction with EXP Report LON-21008138- based on observations of the excavator resistance.	A0.	. 100l	pit 10g	IOIH	ER TE	STS Gravity	С	Coı	nsoli	datio	on							
3) T	est pit ope	en and dry upon completion of excavation. s below ground surface.				HH	ydrome eve Ar	eter	CI	D C	onso	olida	ated				iaxia Tria			
5) G	eodetic el	evations surveyed using a SOKKIA GCX2 Receiver	-			γ υ	nit We	ight	Ul	U U	ncor	nsoli	idate	ed L	Jnd	rain	ed T	riaxia	ıl	
						KLa	eid Per ab Perr	rmeability neability	y U(ncor rect			om	pre	SSIO	11			
							ER LE Appare		▼ Me	eas	ured			Ā	Þ	\rtes	sian	(see	Not	es)

ex	p.

TP3

	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0																			
	-	Hunter Farm													-210	0813	3-A0	_		
		Auburn Developments Inc.	го.		(0.0) (0	tion	M 40		TUM				, al							
LO	CATION	Marion Street, Dorchester, ON		DAI	ES.				May 12									_		
DEPTH	MLM>41-02		STRATA	W E L L				PLES RECOVERY	N	שטרא י	SHEAR STRENGTH ◆ S Field Vane Test (#=Sensitivity) ▲ Penetrometer ■ Torvane									
1	I	STRATA DESCRIPTION	Å		Y P E	;	Ü M	δĀ	(blows)	Ē		to ele e	40	-14	, , , , , , , , , , , , , , , , , , ,	80 k		41		
	O N	DESCRIPTION	P	L OG	P		NUMBER	E R	or RQD	ロ田区のートン	A	terbe	_	M W		ioisti	ire			
(m) -0 -	(m) 256.2		후					(mm) or (%)	(%)	Ť Y (kN/m3)		T N V	— <u>⊢</u>	×	⊣	mic (
		TOPSOIL - 300 mm	17.71.1 71.14.71															$\mathbb{H}_{\mathbb{L}}$		
	255.9	PEAT - black, fibrous, wet	17 - 71-17		\forall						++	+++	Ш	+	+		H	H		
		TEXT States, No.	1, 11,		$ V _{c}$	3B S	SA 1							\blacksquare				323		
-			71/		\mathbb{N}		5, ()										Ш	∄ 1		
-			1/ 1//															Н-		
-1	255.2	MARL - mixed peat, light grey, wet	77 7		Н						-	+++	Ш	+				H-		
-		marke mixed peak, light groy, wet	1, 11,			GB S	SA 2						Ш	\blacksquare		Ш		dio		
-			<u> </u>		\mathbb{N}		J, (_										Ш	$\sharp \downarrow$		
			1/ 1//												$\pm H$			HJ		
			<u> </u>									+++		+	+H	+	H	H		
			77 77											+	\blacksquare			#1		
-2			1, 11,										Ш			Ш	Ш	$\exists \exists$		
-			<u> </u>															\exists		
-			1, 11,											+H	+H			\mathbb{H}		
-			71/2															П-		
_			<u> </u>								Ш		Ш	Ш		Ш	Ш	∄.		
-3	253.2		711/2 V															\mathbb{H}_{\perp}		
		SAND - brown, loose, wet			M						Ш	+++	\mathbb{H}	+	+	+	Н	\mathbb{H}		
						GB S	SA 3				О			+H	\blacksquare	\blacksquare	Н	H1		
	252.7	Find of the day's at 0.5 m. have			\mathbb{H}						Ш							П		
-		End of test pit at 3.5 m bgs.																		
-																		-		
-4																		-		
-																				
-																		11		
5			1						EGEND									_		
<u>NO1</u>				_					er Samp ore (eg. l		SS Sp (, etc.)	olit Spo	on			Shelby /ane s				
m	iust be re	erpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-A	∕ others \0.	s. Test	pit lo	og	OTHE	R TES	STS								Ċ			
2) Te 3) Te	est pit is b est pit cav	ased on observations of the excavator resistance. ed and water observed near 3.0 m bgs upon comple s below ground surface.	tion of	excav	ation	1.	H Hy	drome		C	Consol) Cons	olidate	d Drai							
4) bo 5) G	gs denote eodetic el	s below ground surface. evations surveyed using a SOKKIA GCX2 Receiver.						eve An nit Wei			J Cons J Unco						ıl			
		, ,					P Fie	eld Per	meability	/ UC	C Unco S Direct	nfined	Comp							
						- 1			neability VELS	DS	DILEC	ı ənea	ı							
			WATER LEVELS																	

ex	p.

TP3A

PR	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0																					
		uburn Developments Inc.			_						Ge								_			
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:						Mater Level											
DWPLI	M-M>4H-OZ	STRATA	ST R A T A	W E L L	T Y P	-	SAM NUMBER	PLES RECOVERY	N VALUE (blows)	שטרא סהי		P	ene	eld ' tro	Van net	e T er 0	est	(#=: To	Sens rvan 80	e ķPa		
''	N N	DESCRIPTION	P	G G	PE	•	BE	E R V	or RQD	ロயヱの――>		А	tte	rbei	_		ts a W		Mois	ture	•	
(m)	(m) 255.4		후				ĸ	(mm) or (%)	(%)	T Y (kN/m3)		S	PT 10	N V	ا alue 2			⊣ Dyna 30	amic	Cor	ne	
-0 -	200.4	TOPSOIL - 300 mm	7/1 /V		П			(70)		(KIWIII)	Ħ	Н	Ï	Ή	HÌ	Ť	Щ	Ŧ		Π		Ħ
	255.1	SAND - brown/grey, trace gravel, loose, wet	17 : 7.17		\sqcup						H	Ħ	Ħ				\blacksquare			\boxplus		
_		CAND - Blown/gley, trace graver, loose, wet				ЗB	SA 1				H	Ħ	H			\blacksquare	\blacksquare			\blacksquare		11
					$\langle \rangle$						H	H			\blacksquare	\blacksquare	\blacksquare			\blacksquare		
− 1											H	H								Ш		
· -											H	Ħ					Ш			Ш		11
-											H	Ħ	\parallel							$\frac{1}{1}$		11
-											Ħ	Ħ	Ħ				Н			\boxplus		1
-											H	Ħ	H							H		1
-2											H	H	H				H			\blacksquare		$\left\{ \cdot \right\}$
-											H	H	H		\blacksquare					\blacksquare		$\left\{ \cdot \right\}$
_	252.9											H								Ш		H
-		End of test pit at 2.5 m bgs due to unstable sidewalls.																				$ \cdot $
-																						
-3																						-
_																						
-4																						
_ '																						
-																						
-																						-
-																						-
5			<u> </u>			\dashv			EGEND													Ц
<u>NO1</u>		rpretation requires assistance by EXP before use by	nit I		⊠ A □ F	S Aug Rock C	er Samp ore (eg.	le	S), e	S S tc.)	plit	Spo	on				Shell Vane			,		
2) T	nust be rea	ad in conjunction with EXP Report LON-21008138-A ased on observations of the excavator resistance.	\0.	s. Test	рии	og	G Sp		Gravity					ation								
3) To 4) bo	est pit cav gs denote	ed upon completion of excavation. s below ground surface.					S Si	/drome eve An	alysis	CL	JC	cons	solio	date	d U	ndra	aine		iaxial			
[5) G	eodetic el	evations surveyed using a SOKKIA GCX2 Receiver.					P Fie		meability	y UC	Cι	Inco	onfi	ned	Cor				Triax	tial		
							WAT	ER LE		DS	S C	ired	ct S	hea	r							
			- [ppare		▼ Me	eas	ure	ed		7	Ĭ.	Art	esia	n (se	e No	otes)				

ex	p.

TP4

_	DDO IFOT House Farms																			
	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0 CLIENT Auburn Developments Inc. DATUM Geodetic																			
		Auburn Developments Inc. Marion Street, Dorchester, ON	Fxcav	ration	May 12						vel			_						
		manori otreet, Boronester, ON	$\overline{}$	D/(1	LО. Т					Mater Level SHEAR STRENGTH										
DWPHI	ZO1> <mr< th=""><th>STRATA DESCRIPTION</th><th>STRATA P</th><th>WELL LOG</th><th>TYPE</th><th>N U M B E R</th><th>RECOVERY</th><th>N VALUE (blows) or</th><th>BULK DEZW-FY</th><th colspan="8">◆ S Field Vane Test (#=Sensitivity) ◆ Penetrometer ■ Torvane 40 80 kPa Atterberg Limits and Moisture</th></mr<>	STRATA DESCRIPTION	STRATA P	WELL LOG	TYPE	N U M B E R	RECOVERY	N VALUE (blows) or	BULK DEZW-FY	◆ S Field Vane Test (#=Sensitivity) ◆ Penetrometer ■ Torvane 40 80 kPa Atterberg Limits and Moisture										
(m)	(m) 256.0		Ļ	Ğ	_	Ē	(mm) or (%)	1,	Ĭ T Y kN/m3)	, , , , , , , , , , , , , , , , , , , ,										
-0-		TOPSOIL - 300 mm	7/1/N. 7/1				1	Ì				Ш	Н			Н	П			
- - - -1	255.7	SAND - brown/grey, some silt, loose, moist to very moist	<u> </u>		G	B SA 1														
- - - -2 -		- becoming grey near 2.0 m bgs																		
- - - -	253.0	End of test pit at 3.0 m bgs.															-			
- - -4 -																	-			
5	r=0							EGEND ger Sampl	e Ø	SS S	nlit Sn	oon		ST S	Shelby	Tube	-			
NOTES 1) Test pit interpretation requires assistance by EXP before use by others. Test pit log must be read in conjunction with EXP Report LON-21008138-A0. 2) Test pit is based on observations of the excavator resistance. 3) Test pit caved and dry upon completion of excavation. 4) bgs denotes below ground surface. 5) Geodetic elevations surveyed using a SOKKIA GCX2 Receiver. As Auger Sample Rock Core (eg. BQ, NQ, etc.) VN Vane Sample C Consolidation H Hydrometer CD Consolidated Drained Triaxial S Sieve Analysis CU Consolidated Undrained Triaxial Y Unit Weight UU Unconsolidated Undrained Triaxial P Field Permeability K Lab Permeability K Lab Permeability UC Unconfined Compression WATER LEVELS Apparent Measured Artesian (see Notes)																				

ex	О.
0/1	٠.

TP5

PR	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0													
		uburn Developments Inc.	DATUM Geodetic Excavation May 12, 2021 Water Level											
LO	_	Marion Street, Dorchester, ON		DATI	ES:				May 12					
Эшент ()	— З ZO1><ш-ш	STRATA DESCRIPTION	SHRAHA PLOH	WELL LOG	T P E		` (n	RECOVERY mm) or	N VALUE (blows) or RQD (%)	≺א-שבשם ארכש	SHEAR STRENGTH S Field Vane Test (#=Sensitivity) Penetrometer Torvane 40 80 kPa Atterberg Limits and Moisture WP W WL SPT N Value X Dynamic Cone			
-0-	255.1	TOPSOIL - 300 mm	7,1 \(\frac{1}{2}\). \(\frac{1}{2}\)		П		+	(%)		(kN/m3)	10 20 30 40			
- - - -1 - - -	254.8	SAND and GRAVEL - brown, trace silt, loose, moist to wet - becoming grey near 2.0 m bgs				GB SA					ф — — — — — — — — — — — — — — — — — — —			
-	252.6		0.00											
- - - - - - - - - - - - -		End of test pit at 2.5 m bgs due to unstable sidewalls.	W A 10			9	MARI		GEND		- - - - - - -			
NOTES 1) Test pit interpretation requires assistance by EXP before use by others. Test pit log must be read in conjunction with EXP Report LON-21008138-A0. 2) Test pit is based on observations of the excavator resistance. 3) Test pit caved and water observed near 2.0 m bgs upon completion of excavation. 4) bgs denotes below ground surface. 5) Geodetic elevations surveyed using a SOKKIA GCX2 Receiver. SAM ☐ F OTH G S H H S Si Y U P Fi K La WAT										BQ, NQ CI CL UL U DS	SS Split Spoon In ST Shelby Tube In VN Vane Sample Consolidation Consolidated Drained Triaxial Consolidated Undrained Triaxial Consolidation Consolidation Consolidation Consolidated Undrained Triaxial			

ex	p.

TP5A

	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0													
	`	uburn Developments Inc. Marion Street, Dorchester, ON		TUM <u>Geodetic</u> Water Level										
LO	_	Midifort Street, Dorchester, ON		DAII	_3 			PLES	May 12		SHEAR STRENGTH			
DHPHI	ELEVAT-	STRATA	STRATA	WELL	-	т		NECO>WEY	N VALUE	יס ארכש	◆ S Field Vane Test (#=Sensitivity) ▲ Penetrometer ■ Torvane 40 80 kPa			
Ĥ	i O N	DESCRIPTION	P	LOG	Ì	T Y P E	NUMBER) ER	(blows) or	ロ田区の――>	Atterberg Limits and Moisture W _P W W _L			
(m)	(m) 255.1		Ρ̈́	G			R	(mm) or (%)	RQD (%)	† Y (kN/m3)	● SPT N Value × Dynamic Cone			
-0-		TOPSOIL - mixed fill, 1.2 m	\(\frac{1}{2\frac{1}{2}\frac{1}{2											
			: <u>7</u> \(\frac{7}{2}\);											
			<u>''</u> . <u>\ </u>											
			$\frac{1}{2}$											
			77. ·7											
-1	253.9		<u> </u>											
		SAND and GRAVEL - grey, loose, wet	0.00 0.00		M	GB	SA 1							
	253.6	SILTY SAND - grey, loose, wet	0.00		А	0.2	.							
		SIETT SAND - grey, 100se, wet			M	GB	SA 2							
-					\mathbb{N}									
-2														
-														
-														
-														
-	050.4													
-3	252.1	End of test pit at 3.0 m bgs.												
-														
-														
-														
-											-			
-4											-			
-														
-														
-														
-														
5					Ш		SAMI	L PLE LE	EGEND					
<u>NO1</u>				_			⊠ A	S Aug	er Samp ore (eg.		SS Split Spoon ■ ST Shelby Tube □ VN Vane Sample			
ľm	nust he re:	rpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-A	.O		•	_	OTHE	ER TE			Consolidation			
3) To	est pit is b	ased on observations of the excavator resistance. ed and water observed near 1.2 m bgs upon comple s below ground surface.	tion of	excava	atio	n.	НΗ	drome eve An	eter	C	D Consolidated Drained Triaxial U Consolidated Undrained Triaxial			
5) G	eodetic el	evations surveyed using a SOKKIA GCX2 Receiver.					7 Ur	nit Wei	ight	UL	U Unconsolidated Undrained Triaxial			
							K La	b Pern	meability neability		C Unconfined Compression S Direct Shear			
									VELS nt	▼ Me	leasured Ā Artesian (see Notes)			

ex	p.

TP6

DD	PROJECT NO. LON-21008138-A0																				
		Auburn Developments Inc.												det		14-2	100	U 130	,- /- (<u> </u>	
		Marion Street, Dorchester, ON	ES: E	Excava	ation _	May 12								eve	l _						
	Ę		s			SAM	IPLES		В	SHEAR STRENGTH											
Б													ivity	"							
ОШР⊢Н	Ă	STRATA	🛱	WELL	Ţ	Ŋ	C	VALUE	l			1		40		1		80 ķī	Pa		
Ĥ	o N	DESCRIPTION	P	LOG	T Y P E	NUMBER	RECOVERY	(blows) or	DE NS-		At	terk	perç			an W		oistu	re		
(\	(m)		卢	Ğ		Ŕ	(mm)	RQD (%)		۱.	SP	TN	Val	lue	—≎	-	_	nic C	:one		
(m) -0 -	257.0	TORONI	17. 15. 15				`or´ (%)	1	(kN/m3)			10		20	<u>-</u> 	30		40			
-	256.7	TOPSOIL - 300 mm	1/ 1//							Ħ					Ш					Щ.	
L	230.7	SAND and GRAVEL - brown, loose, moist	0.00		\bigvee					Ħ			\parallel	Ħ	Ш		#	Ш		Ш.	
_	256.4		0:00		∭GE	SA 1				H	o		\parallel		Ш					Ш.	
		SILT TILL - brown, some clay, trace gravel, compact, moist			\mathbb{M}_{a}					H			\coprod	\parallel	Н		\parallel	Ш		Н.	
-1					GE	SA 2				H			Φ				+			\mathbb{H}_{-}	
					H					H		H	\prod	\prod	H		H	H	$last \Pi$	\mathbb{H}^{-}	
										H	\blacksquare	H	${\mathbb H}$	$oxed{+}$	H	Н	H	Н	Н	\blacksquare	
_										H			\Box		H		+	Ш		\blacksquare	
-										Ħ			\parallel		Щ		#	Ш		#	
										Ħ					Ш			Ш		#	
-2			9							Ħ			Ħ	\dagger	Ш		\dagger	Ш		Ш-	
-										H	Ш	Ш	Ш		Ш			Ш		Ш.	
-										Ш								Ш		Н.	
_		- becoming grey near 2.5 m bgs			M.,					H			+		Н		+	Ш		+	
-					GE	SA 3				H		0	\blacksquare		П		+			\blacksquare	
-3					Н					H		\blacksquare	\mathbf{H}	$oxed{+}$	H		+	H			
-										H		H	Ħ	H	F		Ħ	Ш		#	
_										Ħ			\parallel		П			Ш		Ш.	
_										Ħ			\parallel		Ш		#	Ш		뵘.	
_										Ħ			\parallel		Ш			Ш		Ш.	
-4	253.0		90							H										Ш.	
-7 -		End of test pit at 4.0 m bgs.																			
-																					
5	l		1					EGEND	de 🔽	<u> </u>		lit C	·				T 0'	- الم	т!		
NO:		erpretation requires assistance by EXP before use b	nit loo	□ F	Rock Č	ger Samp ore (eg.			SSp c.)	iit S	poc	on				nelby ane S					
'n	nust be re	ad in conjunction with EXP Report LON-21008138- based on observations of the excavator resistance.	A0.	. rest	pit 10g	TOTH	ER TE	STS Gravity	C	Cor	າຣດli	idati	ion								
l 3) T	est bit obe	en and dry upon completion of excavation. s below ground surface.				G Specific Gravity C Consolidation H Hydrometer CD Consolidated Drained Triaxial S Sieve Analysis CU Consolidated Undrained Triaxial															
5) G	eodetic e	evations surveyed using a SOKKIA GCX2 Receiver	-			γ υ	nit We	ight	Ül	υU	ncor	nsol	idat	ed L	Jndi	raine	ed T	riaxia	ı		
1						K La	ab Perr	rmeability neability	y 00		rect			Com	pres	55101	1				
							WATER LEVELS ✓ ▼ Apparent ▼ Measured														

ex	0.

TP6A

D.D.	O IECT	Hunter Form											· - ·				NI O	100	042	D A		+
	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0 CLIENT Auburn Developments Inc. DATUM Geodetic																					
		Marion Street, Dorchester, ON		DAT	ES:	Ex	cava	ition _	May 12,								evel					-
	E							PLES			Τ				EAR	ST	REN	GTI	Н			٦
DHPTH	Ш ₩₩₩₩₩	STRATA DESCRIPTION	STRATA	WELL .	T Y F	5	ZUZBER	RECOVERY	N VALUE (blows)	BULK DEXS-FY		▲ Pe	enet	rom	ete 40	r	■ T	orv	ensit ane 80 k oistu	Pa	y)	
			P O	L O G	Ė	•	E	Ŕ	or RQD	S I T				•	•		w					
(m)	(m) 257.6		Ť					(mm) or (%)	(%)	Ý kN/m3)		● SF	PT N 10	l Va	lue 20	>	< Dy 30	-	nic (-	e	
- 0 - - - -		TOPSOIL - mixed peat, 1.2 m	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1																			
1 -	256.4	SANDY SILT - brown/grey, trace gravel, trace	\(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \																			_
-	255.6	clay, loose, very moist to wet			X	GB S	SA 1															
- 2 - - - - - -		End of test pit at 2.0 m bgs.																				
-4 - - - - 5							SAMF	PLE LE	EGEND													
1) Te m 2) Te 3) W 4) bo	NOTES 1) Test pit interpretation requires assistance by EXP before use by others. Test pit log must be read in conjunction with EXP Report LON-21008138-A0. 2) Test pit is based on observations of the excavator resistance. 3) Water observed near 1.8 m bgs upon completion of excavation. 4) bgs denotes below ground surface. 5) Geodetic elevations surveyed using a SOKKIA GCX2 Receiver. As Auger Sample □ Rock Core (eg. BQ, NQ, etc.) □ VN Vane Sample □ VN Vane																					

ex	p.

TP7

	0.1507	U										<u>.</u>		_			400	•	
	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0 CLIENT Auburn Developments Inc. DATUM Geodetic																		
					FO: 1	-	- 4:												-
LO	CATION	Marion Street, Dorchester, ON		DAI	ES: E	xcava	ation _	May 12							evel				
	E		ş			SAM	IPLES		אררא		Fiel					GTH		.i4.A	
₽	M-M02		STRAT	W E L L			R	N	K		riei eneti							vity)	
ОШР⊢Т	Ą	STRATA	Ţ	E	т	N	မြ	VALUE	₽				40			8	0 kP	а	
Ĥ	Ö	DESCRIPTION	^ p		T Y P E	NUMBER	RECOVERY	(blows)	Ň		tterk	erg					istur	·e	71
			<u> </u> O	L OG	=	E		RQD	ロயヱめート≻				WP	W	w	L			
(m)	(m) 259.0		Ť				(mm) or (%)	(%)	Ϋ́ (kN/m3)		PT N 10	Val	ue 20	>	Oy 30		ic Co 40	one	
-0 -	239.0	TOPSOIL - 400 mm	74 1× . 7/				(%)		(KIV/III3)	ш		Т		П		П		Т	
-			1/. 311/	l						HH	\mathbb{H}	\mathbb{H}			+	Н	\mathbb{H}	+	Н-
-	258.6		<u> </u>		Ц					Ш	Ш	Ħ	Ш				Ш		┇╻
		SANDY SILT - brown, trace clay, trace gravel, , loose, moist			М					HH	+++	+	+	+	+	H	+++	₩	$H \mid$
		,			GE	SA 1					\blacksquare	H						\blacksquare	\square
-					Н					Ш	Ш	\parallel	Ш				Ш		
-1										\mathbb{H}	+++	+	H	\mathbb{H}	+	H	+++	+	H - I
-											Ш	Ħ			\perp	Ш	Ш	\bot	\square
										Ш	Ш	\pm				Ш	Ш		
	257.5	CLAYEY SILT TILL - grey, trace sand and	97.		Н					\mathbb{H}	H	+	+		+	Н	+	+	Н
-		gravel, stiff, moist		1	$\mathbb{N}_{\mathbb{C}^{\mathbb{R}}}$	SA 2				Ш	Ш	Ħ					Ш		
-					$\mathbb{N}_{\mathbb{C}}$) SA 2				Ш		\parallel							┨ ┨
-2					Н					\vdash	\mathbb{H}	+			+	Н	+H	+	H–
_										Ш	Ш	\parallel	Ш			Ш	Ш	†	┨┨
			30	1						HH		$^{+}$			+			+	Н
-				1						Ш	Ш	\prod	Ш		\blacksquare	Ш	Ш	\bot	87
-											Ш	Ш					Ш		┨┨
-				1						++	+	+	+		+	Н	\mathbb{H}	+	-
-3			73	1								\parallel							4-1
_				l						Ш	Ш	Ш				Ш	Ш		
				1						H	+	+			+			+	H
	255.5									Ш	Ш				Ш	Ш	Ш	Ш	
-		End of test pit at 3.5 m bgs.																	-
-																			-
-4																			Ш
-																			
-																			-
-																			
لجا																			
3								EGEND Ier Samn	- le 171	SS S	nlit S	noo	n		ST	Γ.Sh	alby ⁻	Tube	.]
	NOTES 1) Test pit interpretation requires assistance by EXP before use by others. Test pit log AS Auger Sample																		
lím	nust be re	ad in conjunction with FXP Report I ON-21008138-	10. No.	, i Col	pit 10g	JOIH	ER TE	STS Gravity	C	Consc	didati	on							
3) T	est pit ope	pased on observations of the excavator resistance. en and dry upon completion of excavation. s below ground surface.				HH	ydrome	eter	C	O Con	solida	ated							
4) bo 5) G	gs denote eodetic el	s below ground surface. evations surveyed using a SOKKIA GCX2 Receiver.					eve An nit Wei			J Con: J Unc									
						P Fi	eld Per	rmeability	/ UC	C Unc	onfin	ed C							
						1		neability VFLS	DS	S Dire	JI SN	ear							
	WATER LEVELS																		

ex	p.

TP8

	OUTOT	Haratas Farma									<u> </u>	T NI	_	_	<u> </u>			20.	•	_
	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0 CLIENT Auburn Developments Inc. DATUM Geodetic																			
		•		D 4 T		-	- 4°				_									-
LO	CATION	Marion Street, Dorchester, ON		DAT	ES: 1	xcava	ation _	May 12							Lev					
	Ę		ş			SAM	IPLES		B U	L	° E	_			_	ENG		141	:4. A	
₽	ZO1> <mr< td=""><td></td><td>ST RAT</td><td>WELL</td><td></td><td></td><td>R</td><td>N</td><td>Ĺ K</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Sens rvan</td><td></td><td>ity)</td><td></td></mr<>		ST RAT	WELL			R	N	Ĺ K								Sens rvan		ity)	
ОШР⊢Т	Ą	STRATA	🛱	E	Т	N	Ö	VALUE	₫				4	4 <u>0</u>			80	ķPa		
Ĥ	0	DESCRIPTION	^ P		T Y P E	NUMBER	RHCO>HR>	(blows)	N		Att	erbe	rg l	Lim			Mois			11
			<u>-</u> 한	LOG	E	E R		or RQD	ロயヱめート>				١	N _P	W	WL				
(m)	(m)		Ť				(mm)	(%)	-			ΓN\	/alu	ie			amic		ne	
-0-	258.0	TOPSOIL - 400 mm	74 1×. 7/				(%)		(kN/m3)	h	\Box	10 	Ή	2 0	ΤП	30	тт	10	ΙП	+
-			17. 71.17							Ш	\blacksquare	Ш	\blacksquare	\bot	Ш	\blacksquare	Ш			44
	257.6		: <u>\'\\'</u> .\'\\							Ш	Ш	Ш		Ш	Ш	\pm	Ш	Ш		┧]
		SILTY SAND - brown, loose to compact, moist			М					Н	+	Н	$^{+}$	$^{+}$	++	$+\!\!+$	₩	+		$+$ \parallel
-					GE	SA 1				Ш	\blacksquare	Ш	0	$^{\parallel}$	Ш	#	Ш	Ħ		11
-					\Box					H	+	Н	+	H	++	+	\mathbf{H}	H		11
-1										H		\mathbb{H}			Н	#	Ш			44
_	256.8									Ш	Ħ	Ш		Ħ	Ш	#	$\parallel \parallel$			11
		CLAYEY SILT TILL - brown, trace sand, stiff, moist			М					Н	$^{+}$	Н	$^{+}$	$^{+}$	${\mathbb H}$	$+\!\!+$	₩	$^{+}$		+ $ $
					GE	SA 2				Ш		0		Ħ	Ħ	#	Ш			41
-					Ш					Ш	Ш	Ш	Ш	Ħ	Ш	\pm	Ш	Ħ		11
-										Н	+	Н		+	H	++	\Box			44
-2	256.0				Ц					Ш	П	Ш	Ħ	Ħ	Ш	#	Ш			11
		SILT TILL - grey, compact, moist	1916		М					H	+	Н	$^{+}$	$^{+}$	++	++	++	H		+
					GE	SA 3				П	H	¢	1	H	\blacksquare	\mp	\prod			71
-					Ц					Ш		Ш			Ш	\pm	Ш			11
-										Н	+	Н	$^{+}$	₩	${\mathbb H}$	$+\!\!+$	₩	₩		┨┨
-			48							Ш	\blacksquare	Ш	\blacksquare	Ħ	Ш	#	Ш	Ħ		44
-3										Ш		Ш		Ħ	Ш	\pm	Ш			11
٥		- dilatant silt layering encountered near 3.0 m bgs								Н	+	Н	$^{\rm H}$	$^{+}$	${\mathbb H}$	$+\!\!+$	₩	₩		$+$ \parallel
-										Ш	Ħ	Ш	\blacksquare	Ħ	Ш	#	Ш			11
-	254.5		91							Ш		Ш	\parallel	$^{+}$	Ш	<u></u>	Ш			1-
-		End of test pit at 3.5 m bgs.																		-
_																				
4																				
- 4																				П
-																				
-																				-
-																				
_																				
_																				
5								EGEND			٠ .				_	<u></u>	O			
NOTES																				
ľm	nust be rea	erpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-A	40			ОТНІ	ER TE	STS		-	,								•	
2) T	est pit is b est pit ope	ased on observations of the excavator resistance. In and water observed near 1.2 m bgs upon complet is below ground surface.	ion of e	excava	tion.		pecific ydrome	Gravity eter				datio lidat		Orair	ned .	Triax	kial			
4) b	gs denote	s below ground surface. evations surveyed using a SOKKIA GCX2 Receiver.	5. 6			S Si	eve An	alysis	Cl	J Co	nso	lidat	ed (Jndr	aine	ed Tr	iaxial			
] ,	JOUGHU E	evaluents surveyed dailing a SONNIA GOAZ Necelver.				P Fi	nit Wei eld Per	meability	/ UC	C Ur	ncon	fine	d Co				Triax	ııdı		
						K La	b Pern	neability [•]				She		•						
	WATER LEVELS ✓ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬																			

ex	p.

TP9

	-	Hunter Farm								OJE				N-210	08138	3-A0	-
		uburn Developments Inc.		DAT	го.		vetion			TUM	,			al			-
LO	CATION	Marion Street, Dorchester, ON		DAI	ES.			<u>May 12</u>				Wate					
DEPTH		STRATA	STRAT	W E L L			RECOVERY		BULK D				Tes r	t (#=	Sensit	•	
H	i O N	DESCRIPTION	P		T Y P E		İ	(blows)	E N	A	tterbe	rg Lir	nits		Moistu		11
			Ŀ	L OG	E		R	. 1	ロ田区の一下と			_ ∸	, W	WL			
(m) -0 -	(m) 263.3		Ť		Ļ		(mn or (%)	(%)	Ý (kN/m3)		PT N \ 10	/alue 20	×	Dyna 30	amic C 40		Ц
		TOPSOIL - 400 mm	17.71.14 34.14.71.14							Ш							
	262.9		· · · · · · · · · · · · · · · · · · ·							-	+++	+++	Н			Ш	+ 1
		CLAYEY SILT TILL - brown, stiff, moist	73/		\bigvee					\Box	\square	\mathbf{H}				Ш	71
-					∭G	BSA	. 1			Ш	Ш						11
-					\triangle					+++		+++	Н				++
-1																	-
_										Ш	Ш	Ш	Ш	Ш		Ш	11
				l						+++	+++	+++				HH	1
																	77
-										Ш			ш			Ш	11
-				ł								+++					┪┪
-2				1						\mathbb{H}	+++	+	Н			Н	74
_										Ш		Ш					11
			30							++	+++	+++	H			HH	$\ \ $
	260.8	SILTTILL brown come day compact moist			Н								Ш				77
-		SILT TILL - brown, some clay, compact, moist		1	$\mathbb{N}_{\mathbb{C}}$	B SA	2			Ш			Ш			Ш	11
-					\mathbb{N}^{G}	ЫЗА				Ш							∄ ┤
-3					\vdash					HH	+++	+++	Н			+++	- -
-										Ш	Ш					Ш	14
										Ш							1]
				1						${\mathbb H}$	+++	+++	H			HH	$\ \ $
											Ш	Ш					11
-			10	1						Ш	Ш		ш	Ш		Ш	11
4	259.3	End of test pit at 4.0 m bgs.	991.3	 													$\dagger \dagger$
-																	-
_																	
5				<u> </u>		SA	MPLE	<u> </u>									닉
<u>NO1</u>	<u>ES</u>						AS A	uger Samp Core (eg.	le 🛮	SS S	plit Sp	oon			Shelby Vane S		
1) Te	est pit inte	rpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-A	others	s. Test	pit lo	g oı	HER T	ESTS	JW, 190	., 0.0.)			لنن	. V 1 N	, ui iC (zai ii pit	´
12) Te	est nit is h	ased on observations of the excavator resistance				G		c Gravity		Conso			ined	l Triav	ial		
4) bo	gs denote:	n and dry upon completion of excavation. s below ground surface. evations surveyed using a SOKKIA GCX2 Receiver.				S	Sieve A	Analysis	Cl	J Cons	solidat	ed Un	drain	ed Tr	iaxial	ı	
3) G	eouelic el	evalions surveyed using a SORRIA GOAZ RECEIVER.				P		ermeability	y U	J Unco C Unco	onfine	d Com			ırıaxıa	I	
						K	Lab Pe	rmeability		S Direc	t She	ar					
							Appar Appar	EVELS ent	▼ Me	easure	ed	Ť	Aı	rtesia	n (see	Notes)

ex	p.

TP10

DD	OIECT	Hunter Farm							DE		IE C	т .			10	1A1 1	2400	1242	Ω. Α.	n
	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0 CLIENT Auburn Developments Inc. DATUM Geodetic																			
		Marion Street, Dorchester, ON		DAT	ES: E	Excava	ation	May 12								eve	el			
	Е		Τ.				IPLES		В	Г							NGT	Н		
Ē	шшр		STRAT	WELL			RECOVERY	N	U K		S Pe							ensit ⁄ane		y)
ОШ₽Т	Ā T	STRATA	X	ן t	Ţ	N N	Ö	VALUE (blows)	E	L				40				80 ķ		
п	Ò	DESCRIPTION	P	LOG	Y P E		Ė	or	DE NS-		At	terk	perç			sar / V		loist	ure	
(m)	(m)		Þ	G		R	(mm)	RQD (%)	ţ	١.	SP	ΤN	Val	-	-0	—	1	mic (Con	e
(''') - 0 -	269.0	TOPSOIL - 300 mm	7.1 1×. 1/2				(%)		(kN/m3)	<u> </u>	''' 	10	++	20		3		40		\dashv
L	268.7	TOPSOIL - 300 mm	1/2 : 3 : 1/2							Ħ		\parallel		\parallel						Ш
L	200.7	CLAYEY SILT - brown, soft to firm, moist	1717		\forall					L		Ħ		Ш				Ш		Ш
					∬GB	SA 1				H		+	>	H						Ш
			1212		\Box					H	Н	+	+	$^{+}$	$^{+}$				+	Н
	268.0									H		\blacksquare		H						\mathbb{H}
-1	200.0	SILT TILL - brown, stiff, moist								H	Ш	\blacksquare	Ħ	Ħ	H					\square
-					∬GB	SA 2				Ħ	Ш			Н	0					Ш
-					Н					Ħ		\parallel	\parallel	Ħ	Ħ					Ш
-										Н		\pm		Ш				Ш		Ш
_										⊬		+	+	+						H
-2										H	Н	Ħ	H	H	H			\Box	H	Щ.
-										Ħ	Ш			H						Ш
_	000 5									Ħ	Ш			Ħ						Ш
	266.5	SAND and GRAVEL - brown/grey, trace cobble,	0.50		\forall					H		\pm	\pm	Ħ	Ħ			Ш	\pm	Ш
		compact, wet	0.00			SA 3				H		0	+	+					+	Н
			0.0.0		\square					H	Н	+	\mathbf{H}	H	Н				+	\mathbb{H}
- 3			000							H	Н	\blacksquare	+	Ħ	Ħ					\square
-			0.0.0							Ħ				Ħ				Ш		Ш
-			000							H		\parallel	\parallel	Ħ				Ш		Ш
-			0.0.00									Ħ	\pm	Ħ						Ш
-			0.00							H		+	+	H	\mathbf{H}					H
-4	265.0	End of test pit at 4.0 m bgs.	0.0.0							Н										Щ
-																				
-																				
-																				
										L										
NO:	TES							EGEND jer Samp	ole 🖾	S	S Sp	lit S	nod	on –			TS	helby	Tu	be
1) T	 est pit inte	erpretation requires assistance by EXP before use b	y others	s. Test	pit log	□ F	Rock Č	ore (eg.				•	- 50					ane s		
2) T	nust be re est pit is b	ad in conjunction with EXP Report LON-21008138- pased on observations of the excavator resistance.	Å0.			GS	ER TE	Gravity			nsoli									
3) To	est pit cav gs denote	red and water observed near 3.0 m bgs upon comple s below ground surface.	etion of	excava	ation.	HH	ydrome eve An	eter									iaxia Tria			
5) G	eodetic el	evation surveyed using a SOKKIA GCX2 Receiver.				γ υ	nit Wei		Ül	υŪ		nsol	idat	ed l	Und	rain	ed T	riaxia	al	
						K La	ab Perr	neability	, DS		irect			JU11	.p.e	JJIU				
							ER LE Apparei		▼ M	eas	urec	i		Ā	,	Arte	sian	(see	Not	es)

ex	p.

TP11Sheet 1 of 1

PR	OJECT	Hunter Farm								PR	OJE	СТ	NO.		LON	-210	0813	B-A0	
CLIENT Auburn Developments Inc. LOCATION Marion Street, Dorchester, ON DATES: Excavation May 12, 2021 Water Level																			
LO	CATION	Marion Street, Dorchester, ON		DATI	ES:	: E	xcava	ation _	May 12										
DE	шшы		STRATA	W E L L				PLES R E C	N	BU LK		Fie		ane '	Test			ivity)	
DHPHI	4T-OZ	STRATA DESCRIPTION	A PLO	L L O G	Y	ך ב	NUMBER	RECO>ERY	(blows) or RQD	DEIX%-	- 4	Atter	berg		nits a		80 ķ Moist i		
(m) -0 -	(m) 267.7		Ť	,				(mm) or (%)	(%)	T Y (kN/m3)		PT N 10	N Val	ue 20		Dyna 30	mic (
- 0		TOPSOIL - organic fill, 500 mm																	-
-	267.2	0.7.7	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>		Ц														-
-		SILT TILL - grey, some clay, wet sand layering, cobbles, compact, moist			\bigvee	GB	SA 1												
-1					\wedge														-
-																			-
-																			
-																			
- 2	265.7	SAND - grey, fine to medium grained, compact, wet	911.X		\bigvee														_
-					\bigwedge	GB	SA 2												-
-																			-
- -3	264.7																		
-		End of test pit at 3.0 m bgs.																	-
-																			
-																			
-4																			-
-																			
-																			
SAMPLE LEGEND ☑ AS Auger Sample ☑ SS Split Spoon ■ ST Shelby Tube																			
1) T	 est pit inte	erpretation requires assistance by EXP before use by	others	. Test	pit I	log			ore (eg.				υμυσ	11				Sample	
2) T 3) T	est pit is b est pit cav	ad in conjunction with EXP Report LON-21008138-A ased on observations of the excavator resistance. ed and 0.3 m of water observed upon completion of	∙∪. excava	tion.			G Sp H Hy	oecific ydrome	Gravity eter	CI	Conso Con	solid	lated						
4) bgs denotes below ground surface. 5) Geodetic elevation surveyed using a SOKKIA GCX2 Receiver. S Sieve Analysis Y Unit Weight P Field Permeability K Lab Permeability D S Direct Shear																			
	P Field Permeability UC Unconfined Compression K Lab Permeability DS Direct Shear WATER LEVELS ▼ Apparent ▼ Measured ★ Artesian (see Notes)												s)						

ex	p.

TP12

PROJECT Hunter Farm PROJECT NO. LON-21008138-A0 CLIENT Auburn Developments Inc. DATUM Geodetic																				
	· · · · · ·	uburn Developments Inc. Marion Street, Dorchester, ON		DAT	EQ.	E	(C2)/2	tion	Mov 12							ovol				
		manon direct, Borchester, ON		I	LO. T						Water Level SHEAR STRENGTH								$\overline{}$	
DHPTH	ZO1> <mr< td=""><td>STRATA DESCRIPTION</td><td>STRATA</td><td>WELL</td><td>TY</td><td></td><td>NUMBER</td><td>PLES RECOVERY</td><td>N VALUE (blows)</td><td>BULK DEXS-FY</td><td></td><td colspan="5">◆ S Field Vane Test ▲ Penetrometer ■ 40</td><td colspan="4">st (#=Sensitivity</td></mr<>	STRATA DESCRIPTION	STRATA	WELL	TY		NUMBER	PLES RECOVERY	N VALUE (blows)	BULK DEXS-FY		◆ S Field Vane Test ▲ Penetrometer ■ 40					st (#=Sensitivity			
	Ň		P O	L O G	Ë	•	Ĕ	R Y	or RQD	S <u>I</u>						WL				
(m) -0 -	(m) 267.8		T					(mm) or (%)	(%)	Y kN/m3)			N Va 0	alue 20		Dyr 30	amic	Cor 0	ne	
L		TOPSOIL - 300 mm	1/. 1/1/2. 1/1								Ш				Ш			Ш	Ш	
- - -	267.5	SAND - brown, fine to medium sand, trace silt, compact, moist to very moist				GB :	SA 1					0								
- - -					M	GB :	SA 2					•								
- 2 -						GB :	SA 3							Φ					-	
- - - 3	264.8	End of test pit at 3.0 m bgs.									0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
- - -																				
4 - -																			-	
- - 5							SAMI	ol E I i	EGEND											
1) Te m 2) Te 3) Te 4) be	NOTES 1) Test pit interpretation requires assistance by EXP before use by others. Test pit log must be read in conjunction with EXP Report LON-21008138-A0. 2) Test pit is based on observations of the excavator resistance. 3) Test pit caved upon completion of excavation. 4) bgs denotes below ground surface. 5) Geodetic elevation surveyed using a SOKKIA GCX2 Receiver. SAMPLE LEGEND AS Auger Sample Rock Core (eg. BQ, NQ, etc.) OTHER TESTS G Specific Gravity H Hydrometer S Sieve Analysis Y Unit Weight F Field Permeability K Lab Permeability K Lab Permeability WATER LEVELS Apparent Artesian (see Notes)																			

ex	О.
0/1	٠.

TP13

PR	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0									
		uburn Developments Inc.		DAT			4:			TUM <u>Geodetic</u>
LO	_	Marion Street, Dorchester, ON		DATI	ES: I			May 12		Water Level
	ZO−−1 ≻ <mr< td=""><td>STRATA DESCRIPTION</td><td>STRATA P</td><td>WELL L</td><td>TYPE</td><td>N U M B E R</td><td>PLES RECOVERY</td><td>N VALUE (blows) or</td><td>אררש ארכש</td><td>SHEAR STRENGTH S Field Vane Test (#=Sensitivity) Penetrometer Torvane 40 80 kPa Atterberg Limits and Moisture</td></mr<>	STRATA DESCRIPTION	STRATA P	WELL L	TYPE	N U M B E R	PLES RECOVERY	N VALUE (blows) or	אררש ארכש	SHEAR STRENGTH S Field Vane Test (#=Sensitivity) Penetrometer Torvane 40 80 kPa Atterberg Limits and Moisture
(m)	(m)		L O T	LOG	E	R	R Y (mm) or	RQD (%)		W _P W W _L → O I SPT N Value × Dynamic Cone
-0-	265.2	TOPSOIL - 250 mm	7 <u>1 1</u> 8. ·7/				(%)		(kN/m3)	10 20 30 40
-	265.0	SILTY SAND - brown/grey, loose, wet			GE	SA 1				
-	264.5	SILT TILL - grey, some clay, wet sand layering, cobbles, compact, moist	99			SA 2				
-1					\mathbb{N}^{G}	5 3A 2				
-2										
_										
_										
-3										
_										
_										
-4	261.2									
		End of test pit at 4.0 m bgs.								
_										_
-										_
NOT	TES					┪⊠⊢	S Aug	EGEND er Samp		SS Split Spoon ST Shelby Tube
1) To m 2) To 3) To 4) bo	est pit intenset pit intenset be read to be set pit is be set pit openset per set pit openset pit open	rpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-A ased on observations of the excavator resistance. In and water observed near 0.8 m bgs upon complet is below ground surface. evation surveyed using a SOKKIA GCX2 Receiver.	OTHE G Sp H Hy S Sid Y Ur P Fid K La	Rock Core (eg. BQ, NQ, etc.) OTHER TESTS G Specific Gravity H Hydrometer S Sieve Analysis CU Consolidated Drained Triaxial CU Consolidated Undrained Triaxial UU Unconsolidated Undrained Triaxial UU Unconsolidated Undrained Triaxial UU Unconsolidated Undrained Triaxial UC Unconfined Compression K Lab Permeability K DS Direct Shear						
			✓ Apparent ✓ Measured 🛣 Artesian (see Notes							

ex	p.
100	

TP14

DD	DDO ISOT HE AND SHOULD BE AND ADDRESS AND										OT N		1.0	2014	4000	120	۸0				
PROJECT Hunter Farm PROJECT NO. LON-21008138-A0 CLIENT Auburn Developments Inc. DATUM Geodetic																					
		Marion Street, Dorchester, ON		DAT	ES:	Excava	ation	May 12,						Leve	l						
	Ē		Τ.				IPLES			SHEAR STRENGTH											
DHPTH	Ш ₩₩₩₩₩₩₩₩	STRATA	ST RAT A	W E L L	Ţ	NUM	RECOVERY	N VALUE (blows)	BULK DE	▲ P	▲ Penetrometer				40 , 80 ķPa						
-	Ó N	DESCRIPTION	P	LOG	T Y P E	NUMBER	Ė	` or ´	DEZS-TY	A	tterb		erg Limits and Moisture W _P W W _I								
(m) -0 -	(m) 263.1		P A	G		R	(mm) or (%)	RQD (%)	† Y kN/m3)	_	PT N '	Value	· · •	\rightarrow	− ⁄nami	с Со 40	ne				
	262.8	TOPSOIL - 300 mm	17 · 71·17 7/1/2 · 7/1/2								#						₩.				
- - -	202.0	SILTY SAND - brown, trace gravel, weathered, loose, moist			G	B SA 1					o										
- −1		- becoming grey, compact, very moist to wet near															-				
-		1.0 m bgs			G	B SA 2							0								
-																					
-2																	-				
_																					
-	260.4																				
-3 - -	260.1	End of test pit at 3.0 m bgs due to unstable sidewalls.	<u> </u>											111							
- 4																	-				
- -																					
-																					
m	est pit inte oust be re	erpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-	others	s. Test	pit lo	9 OTH	AS Aug Rock C ER TE		BQ, NC	,					T She N Var						
2) To 3) To 4) bo	est pit is b est pit cav gs denote	passed on observations of the excavator resistance. The and 1.8 m of water observed upon completion of solelow ground surface. The evation surveyed using a SOKKIA GCX2 Receiver.		ation.		H H S Si Y U P Fi K La	ydrome eve Ar nit We eld Per ab Perr	nalysis ight rmeability neability	CI CU UU UU	Conso D Cons J Cons J Unco C Unco S Direc	solidat solidat onsolio onfine	ted D ted U dated d Co	ndra I Und	ined draine	Triaxia ed Tria						
			WATER LEVELS								otes)										

TP15

PR	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0																		
		uburn Developments Inc.	DATUM <u>Geodetic</u>																
LO	CATION	Marion Street, Dorchester, ON		DAT	ES: E	Excava	ation _	May 12		Water Level									
DWP-T	Э 2О-⊣⊳<шгп	STRATA DESCRIPTION	שות בוסו	₩ ⊔⊔ 100	T Y E	SAM NUM BER	PLES RECOVERY (mm)	N VALUE (blows) or RQD (%)	あつしょ ひにこのートン	◆ S Field Vane ▲ Penetromete 40 Atterberg Lii	mits and	Sensiti orvane 80 kF Moistu	re						
(m) -0 -	266.5	TOPSOIL - 300 mm	74 1×. 1/1				or (%)		(kN/m3)		30	40	1111						
_	266.2	10PSOIL - 300 mm	7. · 7. · 7. · . · . · . · . · . · . · .										## -						
-		SAND and GRAVEL - grey, looset to compact, very moist to wet			GB	SA 1							-						
1 - -	265.5	SILT TILL - grey, some clay, trace gravel, occassional cobble and boulder, wet sand layering, compact, moist to very moist			GB	SA 2							-						
- 2 -			10 10 10 10 10 10 10 10 10 10 10 10 10 1										-						
- - -3 -	263.0		TO THE STATE OF TH										-						
_	200.0	End of test pit at 3.5 m bgs.	.9.N.X.																
- -4 - -													- - - - -						
2) To 3) To 4) bo	est pit intenust be rea est pit is be est pit cav	erpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-A ased on observations of the excavator resistance. ed and water observed near 1.0 m bgs upon completed below ground surface. evation surveyed using a SOKKIA GCX2 Receiver.		☑ A □ F OTHE G Sp H Hy S Sie Y Ur P Fie K La WAT	S Aug Rock Co ER TES Decific Idrome Pereve An Orit Wei Orit Peres	ore (eg. I STS Gravity eter alysis ight rmeability velS	BQ, NQ C CI CU UU / DS	SS Split Spoon a, etc.) Consolidation Consolidated Dra J Consolidated Un J Unconsolidated U C Unconfined Com S Direct Shear	VN Inned Trial drained Trial Jndrained pression	riaxial d Triaxial	ample								

ex	p.

TP16Sheet 1 of 1

PR	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0										
		uburn Developments Inc.								TUM <u>Geodetic</u>	
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	Excava	ation _	May 12		Water Level	
P	ELEV.		STRATA	W E L L			PLES R E	N	B U L K	SHEAR STRENGTH S Field Vane Test (#=Sensitivity) Penetrometer Torvane	
DEPTH	ĀT-ON	STRATA DESCRIPTION	P	L LOG	T Y P E	NUMBER	KHCO>HK>	VALUE (blows) or	DEINS-TY	40 80 kPa Atterberg Limits and Moisture	
(m)	(m) 255.8		L T	Ğ		Ř	(mm) or (%)	RQD (%)	 T Y (kN/m3)	W _P W W _L → O IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
-0-		TOPSOIL - 400 mm	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7								
	255.4		: <u>7 (7 : 7</u>								
-		FILL - SAND AND GRAVEL - dark brown/grey, loose, wet			GI	3 SA 1				o	
-					\square						
-1										-	
-	254.5	FILL - CLAYEY SILT - dark grey/black, organics,			Ц					-	
	254.2	firm, wet			X GI	3 SA 2				Φ	
		CLAYEY SILT TILL - grey, some sand and gravel, occassional cobble and boulder, wet sand			\bigcup						
		layering, stiff, moist			X GI	SA 3					
-2					\vdash						
_											
-3	252.8										
-		End of test pit at 3.0 m bgs.									
-											
-										-	
-										-	
-4										-	
-										-	
-										-	
-										-	
-										-	
5								EGEND			
1) Te	 est pit inte	erpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-	others	. Test	pit lo	ຸ □ F		er Samp ore (eg. STS		SS Split Spoon ST Shelby Tube VN Vane Sample	
2) Te 3) Te 4) bo	est pit is b est pit cav gs denote:	ased on observations of the excavator resistance. assed on observations of the excavator resistance. ed and water observed near 1.3 m bgs upon comple s below ground surface. evation surveyed using a SOKKIA GCX2 Receiver.	ation.	↑ Unit Weight UU Unconsolidated Undrained Triaxial P Field Permeability UC Unconfined Compression							
				K Lab Permeability DS Direct Shear WATER LEVELS ▼ Apparent ■ Measured ▲ Artesian (see Notes							

ex	p.

TP16A

	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0									T 6 1 4		_		040	0044					
	_	Hunter Farm														·210	<u>U813</u>	8-8	<u> </u>	-
	· · · · · ·	Auburn Developments Inc.		D 4 T	FO:		_4:			ATU	M _					1				-
LO	CATION	Marion Street, Dorchester, ON		DAT	E5:			May 12												
	E L		ļ ş			SAM	IPLES	ı	BULK		S F				TRE est		TH Sens	itivit	lv)	Ш
P	ZO1> <mr< td=""><td></td><td>ST R A T</td><td>W E L L</td><td></td><td>١</td><td>RECOVERY</td><td>N</td><td>k</td><td></td><td></td><td>etro</td><td></td><td></td><td></td><td></td><td>vane</td><td></td><td>.,</td><td>Ш</td></mr<>		ST R A T	W E L L		١	RECOVERY	N	k			etro					vane		.,	Ш
ОШР⊢Т	Ť	STRATA	Ā		Ţ	N	Ö	VALUE	₽					10		1	80			╛╽
н	Ö	DESCRIPTION	l P	LOG	T Y P E	NUMBER	Ě	(blows) or	N S		Att	erbe	_				Mois	ture		Ш
	(m)		þ	Ğ		Ř	(mm)	RQD (%)	ロ田区の一下と		o Da			⊢-	W '	⊣-	! -	O		Ш
(m)	256.0		'				or (%)	1	Y (kN/m3)									Con 0	le '	
-0-		TOPSOIL - 300 mm	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							Н	\blacksquare	Н	\blacksquare	\blacksquare		\blacksquare	Н	Н	H	П
	255.7		<u> </u>		Ц					Щ		Ш					ш	Ш	Ħ	11
-		SAND and GRAVEL - grey, trace silt, compact, moist	0.00		M_{-}					Ш		Ш	\pm				Ш		\pm	┨┨
-			0.00		\ Gi	SA 1				Н	$^{+}$	Н	+	+	Н	+		Н	+	┨┨
-			0.000		\vdash					Ш		Ш	Ħ	Ħ				Ш	Ħ	14
-1			0.000 0.000							Ш		Ш	Ш						Ш	┨
'			0 0							Н	+	Н	+	+	Н	+	+	Н	+	$\ \ $
	254.7 254.6	SILT TILL, grey, trace to some clay, wet sand	97							Ш		Ш	Ħ						Ħ	11
	234.0	layering, compact, moist to very moist								Ш		ш			ш			ш		Ħ
-		End of test pit at 1.4 m bgs.																		$ \cdot $
-																				
-2																				
-																				
-																				-
-																				-
-3																				
																				Ш
-																				\mathbf{H}
-																				-
-4																				-
																				$ \downarrow $
-																				11
-																				$ \cdot $
5						SAM	 PLF!	EGEND		<u> </u>										니
NO1	TES .					 	AS Aug	jer Samp		SS		t Sp	oon				Shelb			
1) To	 est pit inte	erpretation requires assistance by EXP before use b	y others	s. Test	pit lo	n I	Rock C ER TE	ore (eg. STS	BQ, NG	≀, etc	.)				Ш	VN '	√ane	San	nple	,
2) To	iust be rea est pit is b	ad in conjunction with EXP Report LON-21008138- ased on observations of the excavator resistance.	AU. 			G S	pecific	Gravity		Cons				!	- J	F!	:_1			
(3) To	est pit cav gs denote	ased on observations of the excavator resistance. ed and water observed near 1.3 m bgs upon comples below ground surface.	etion of	excava	ation.		ydrome eve Ar			D Co J Co							ial axial			
[5) G	eodetic el	evation surveyed using a SOKKIA GCX2 Receiver.				γ υ	nit We		Ul		con	solid	lated	d Ur	ıdrai	ned	Triax	ial		
				K La	ab Perr	neability		S Dir				unpl	U331	σΠ						
				WATER LEVELS								tes)	,							

ex	p.

TP16B

	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0															
	· · · · · ·	auburn Developments Inc.				_				TUM <u>Geo</u>						
LO	CATION	Marion Street, Dorchester, ON	DAT	ES:	Excava	ation _	May 12		Mater Level							
₽	ZO1> <mr< td=""><td></td><td>ST RATA</td><td>¥</td><td></td><td>SAM</td><td>IPLES R</td><td>N</td><td>ארכש</td><td></td><td>AR STRENGTH ane Test (#=Sensitivity) eter Torvane</td></mr<>		ST RATA	¥		SAM	IPLES R	N	ארכש		AR STRENGTH ane Test (#=Sensitivity) eter Torvane					
DEPTH	Ą	STRATA	 🛣	W L L	I	N	မြ	VALUE	Б		40 , 80 kPa					
Ĥ	ő	DESCRIPTION	P	L OG	T Y P E	NUMBER	RECOVERY	(blows)	NZ0		Limits and Moisture					
			뉴	Ğ	-	Ř		RQD	ロயヱめート>	1	W _P W W _L					
(m)	(m) 255.8		'				(mm) or (%)	(%)	Y (kN/m3)	SPT N Val	ue X Dynamic Cone 20 30 40					
-0 -		TOPSOIL - 300 mm	71 18 17						,							
-	255.5		1		Ц											
-		FILL - SILTY SAND - dark brown/black, loose/compact, moist			M						 					
-		,			∭GE	SA 1										
_					\Box											
			\bowtie													
-1	254.6		\bowtie	1												
-		SILT TILL, grey, trace to some clay, wet sand														
	254.4	layering, compact, moist to very moist End of test pit at 1.4 m bgs.		1												
-		End of test pit at 1.4 in bgs.														
-2											-					
-																
-																
_																
-3											_					
-																
-																
-																
-4											_					
-																
-																
-																
1.5								EGEND Jer Samp	le Ø	SS Split Spoor	n ST Shelby Tube					
1) Te		erpretation requires assistance by EXP before use by	others	: Test	nit lo	,	Rock Č	ore (eg. l			☐ VN Vane Sample					
m	nust be rea	ad in conjunction with EXP Report LON-21008138-A	\0.	. 1 UOL	hir iof	ΊΟΙΗ	ER TE	STS Gravity	<u></u>	Consolidation						
3) T	est pit cav	ased on observations of the excavator resistance. ed and water observed near 1.3 m bgs upon comple s below ground surface.	tion of	excava	ation.	HH	ydrome	eter	CE	O Consolidated	Drained Triaxial					
4) by 5) G	gs denote: leodetic el	s below ground surface. evation surveyed using a SOKKIA GCX2 Receiver.				S Si	Undrained Triaxial ed Undrained Triaxial									
						Y Unit Weight P Field Permeability K Lab Permeability WATER LEVELS UU Unconsolidated Undrained Triaxial UC Unconfined Compression DS Direct Shear										
				Appare		▼ Me	easured	▲ Artesian (see Notes)								

*ex	0.

TP201

PROJECT Hunter Farm PROJECT NO. LON-21008138-A0																						
CLIENT Auburn Developments Inc. DATUM Geodetic																						
		Marion Street, Dorchester, ON	Excav	ation _	Augus									eve	_				_			
	Ę		SAN	IPLES	i	В								REN					П			
Б	ELEV		ST RAT	Ψ	¥		R		Į Ķ				eld ' tro						ens van		ty)	
DEPTH		STRATA	🛱	WELL	Ţ	Ŋ	Ö	VALUE	₽						40					ķPa		
Н	A T O N	DESCRIPTION	P Q T	LOG	Y P E	NUMBER	RECOVERY	(blows) or	DE NS-		A	tte	rbei				an W		lois	ture)	$ \ $
()	(m)		R	(mm)	RQD (%)		١.	SF	РТ	N V		H	╼	-		mic	Col	ne	$ \ $			
(m) −0 −	255.2	TOPOO! 400 mm	74 15. 14		ļ.,.		(%)	1	(kN/m3)		- '-	10			20	-` 	30			0	╧	Ц
-		TOPSOIL - 400 mm	1/. 11/							Ħ		Ħ		Ħ	Ħ	\sharp	#				Ш	1]
-	254.8		1.11							Ħ		Ħ		Ħ	Ħ	\sharp	#				Ш	1
_		SAND and GRAVEL -grey, coarse-grained, loose to compact, moist to very moist	0.00							Ħ		Ħ	\parallel		\parallel	\pm	\pm				Ш	<u> </u>
			0.00							Ħ		H	\parallel			\pm	\pm				Ш	<u> </u>
_1			0 0 0							Ħ		Н	Ш		H	╁	\pm				Ш	1]
<u> </u>			0.0.0							H		H	H	H	H	\pm	\pm	\parallel			Ш	<u> </u>
			0000							H						\pm	\pm				Ш	$\frac{1}{2}$
	253.7	End of test pit at 1.5 m bgs.	i i i							Н						Ш	Ш				Ш	\mathbb{H}
-2																						
																						1
																						1
																						1
-3																						
-																						
-																						$ \cdot $
-																						
-																						$\ \cdot\ $
-4																						$ \cdot $
-																						$\ \cdot\ $
-																						$ \cdot $
-																						$ \cdot $
-																						$ \cdot $
5			<u> </u>			SAM	 PLF I	 EGEND	<u> </u>	<u>L</u>						_	—				—	니
<u>NO1</u>	<u>ES</u>					⊣ ⋈ /	AS Aug	ger Samp ore (eg.				plit	Spc	on					helb /ane		ube mple	
ĺ'n	nust be re	erpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138- <i>i</i>	others	s. Test	pit lo	g oth	ER TE	STS								<u>ڪا</u>	. v	. • V	ai ic	Jai	ipic	
2) Te 3) Te	est pit is b est pit ope	pased on observations of the excavator resistance.				HH	ydrome		CI	D C	cons	soli		d E			d Tri					
4) bo	gs denote	s below ground surface. evations surveyed using a SOKKIA GCX2 Receiver.				γ υ	eve Ar nit We	ight	Ül	Uυ	Inco	ons	olida	ate	d U	ndr	aine	ed T	axial Triax			
						P Fi	P Field Permeability UC Unconfined Compression K Lab Permeability DS Direct Shear															
		WAT	ER LE Appare	VELS	▼ M	eas	sure	d			Ī	Α	rtes	sian	(se	e No	otes)					

ex	p.

TP202

	DRO IECT Munter Form																				
	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0																				
CLIENT Auburn Developments Inc. DATUM Geodetic LOCATION Marion Street, Dorchester, ON DATES: Excavation August 4, 2021 Water Level											-										
	CATION	Marion Street, Dorchester, ON	xcava	auon _	Augus		21											ᅱ			
	E L		ş			SAM	IPLES		BULK	١.	s ı					REN st (#			itivi	itv)	Ш
P	Ž.		ST RAT	W E L L		١	R	N	k			netr						/ane		٠٠,	Ш
DEPTH	M-M>40z	STRATA	I	t	Ţ	N	Ö	VALUE (blows)	P					40				80 I			╛
H	Ó N	DESCRIPTION	P L OT	LOG	T P E	NUMBER	RECOVERY	or	ロ田区の一下と		At	terb	erg			an W		loist	ture	•	Ш
	(m)		G		R	(mm)	RQD (%)	ļţ		SP	TN	Val	Ė	-0	, D)	_	mic	Col	ne	Ш	
(m) -0 -	255.9		1.47. %				`or ´ (%)		(kN/m3)			10	Va.	20		30			0		Ц
		TOPSOIL - 300 mm	\(\frac{1}{2}\frac{1}{							Н	+	+	${\mathbb H}$	Н		H	$^{+}$	+		Н	$\ \ $
	255.6	SILTY SAND , brown, trace gravel, trace								Н	+	+	${\mathbb H}$	Н	+	\mathbb{H}	$^{+}$			Н	+
-		cobbles, loose to compact, moist								П	\blacksquare	$\downarrow \downarrow$	Ħ	Ħ			\parallel				11
-										Ш							Ш				11
-										Н	+	+	H	Н			$^{+}$				11
-1	254.9	SANDY SILT , grey, fine-grained, trace clay,								Н	+	+	H	\mathbb{H}		\mathbf{H}	+			\blacksquare	\dashv
-		loose to compact, moist								П		Ħ	Ħ	Ħ	1		Ħ			Ш	14
_	054.4									Ш			Ħ	Ш			П				11
	254.4	End of test pit at 1.5 m bgs.	1.1.1.							Н				Ш			Ш			Ш	\dagger
																					Ш
-2																					H
-																					-
-																					-
-																					-
-																					
-3																					
																					Ш
																					1
-																					11
-																					Н
-4																					-
-																					-
-																					
																					Ш
5			1					EGEND	. –		_								_		+
<u>NO1</u>				_		I Ⅲ F		er Samp ore (eg. l				lit S _l	000	n		■ S □ V					
lím	ust be re	erpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-	y others 40.	s. rest	pit log	ОТН	ER TE	STS	•		,	الماما								•	
2) Te 3) Te	est pit is b est pit ope	pased on observations of the excavator resistance. en and dry upon completion of excavation. s below ground surface.				G Specific Gravity H Hydrometer S Sieve Analysis Unit Weight C Consolidation CD Consolidated Drained Triaxial CU Consolidated Undrained Triaxial UU Unconsolidated Undrained Triaxial															
4) bo 5) G	js denote eodetic el	s below ground surface. evations surveyed using a SOKKIA GCX2 Receiver																			
	5, SSSSSSS SISTABOTO SULTOYOU GOTT OF TOO TOO TOO TOO TOO TOO TOO TOO T								P Field Permeability UC Unconfined Compression K Lab Permeability DS Direct Shear												
							ER LE	-	D	וט ט	CUL	SIL	aı								
				Appare		▼ Me	eası	ıred			Ā	1	Artes	ian	(see	e No	otes)			

ex	p.

TP203

															_
PR	PROJECT_Hunter Farm PROJECT NO. LON-21008138-A0												_		
CL	IENT _A	Auburn Developments Inc.				TUM _		etic			_				
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	Exc	avation	Augus	t 4, 202	21	_ Wa	ter Lev	/el		_
D	ELEV	STRATA	w		S	AMPLES R	S	B U L K		eld Var	e Test	ENGTH (#=Sensi			
DHPTH			À	W E L	۱.		RECOVERY	N VALUE	l	▲ Pene			Torvane		Ш
Ť H	AT-OZ	STRATA DESCRIPTION			Y P E	N N E	ĬΙΑ	(blows)	DENS-TY	Atte		0 imits a	1 08 and Moist		H
	Ň		<u>P</u>	G F	E			or RQD	Ŝ	7 1110	_	V _P W			Ш
(m)	(m) 256.6		P			'	(mm or (%)	(%)	T Y (kN/m3)	• SPT 10		_	─l Dynamic 30 4		
-0-		TOPSOIL - 300 mm	1/. 1/.				(70)		,,						П
	256.3	SILTY SAND , brown, fine to medium-grained,									\mathbb{H}				$\left\{ \ ight]$
_		moist grained,													11
-		-becoming grey, fine-grained and very moist at 0.6									Ш				11
-		m bgs									Ш				11
-1	255.6	End of test pit at 1.0 m bgs.									ш				Н
-															$ \cdot $
-															$ \cdot $
-															-
-															-
-2															-
-															
_															
															Ш
															Ш
2															
-3															
															П
-															П
_															H
-4															Н
-															$\left \cdot \right $
-															-
-															-
-															$ \cdot $
5						10,	MD' E '	FOEND							Ц
NO1	ES					$\neg \mid \boxtimes$	AS Au	.EGEND ger Samp		SS Split	Spoon		ST Shelb		
1) Te	est pit inte	erpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-A	others	s. Test	pit Ic] Rock (THER TE	Core (eg. ESTS	BQ, NG	, etc.)		Ш	VN Vane	Sample	
2) Te	est nit is h	ad in conjunction with EAP Report LON-21008138-A pased on observations of the excavator resistance. an and dry upon completion of excavation.	ιυ.			G	Specific	Gravity		Consolida		rained ⁻	Triavial		
4) bo	as denote:	en and dry upon completion of excavation. s below ground surface. evations surveyed using a SOKKIA GCX2 Receiver.				s	H Hydrometer CD Consolidated Drained Triax S Sieve Analysis CU Consolidated Undrained Tr								
J) G	couelic el	evalions surveyed using a SURNIA GUAZ RECEIVER.				Y Unit Weight UU Unconsolidated Undrained T P Field Permeability UC Unconfined Compression								ıaı	
							Lab Per ATER LI	meability =VFLS	DS	S Direct S	hear				
			Andre		▼ Me	easured	7	A rt	esian (se	e Notes)					

ex	p.

TP204

													_	
	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0 CLIENT Auburn Developments Inc. DATUM Geodetic													
	`	<u>-</u>				letic	_							
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	Ex	cava	ition _	Augus	t 4, 202	21 Wa	ater Level	-	
,	ZOIV <mr< td=""><td></td><td>;</td><td>SAM</td><td>PLES R</td><td></td><td>BU LK</td><td>S Field Va</td><td>AR STRENGTH ne Test (#=Sensitivity)</td><td>П</td></mr<>		;	SAM	PLES R		BU LK	S Field Va	AR STRENGTH ne Test (#=Sensitivity)	П				
Ошр⊢т	V A		ST RAT	¥ L L	_		N	RHCONHRY	N VALUE	l	▲ Penetrome			
Ť	Ĭ	STRATA DESCRIPTION	A		Y P E		ZUEBUR	Ϋ́	(blows)	DENS-TY		40 , 80 kPa Limits and Moisture	1	
	Ň	BEOGIAI NON	P Q 	L OG	E		E	Ŕ	or RQD	Ŝ		W _P W W _L		
(m)	(m)		¥					(mm) or	(%)		SPT N Value			
-0-	255.2	TOPSOIL - 300 mm	74 1×. ·7	<u> </u>	+	+		(%)		(kN/m3)	10 ;	20 30 40 	Н	
-	254.9		17. 11.17										$\mid \cdot \mid$	
-	201.0	SILTY SAND , grey, fine to medium-grained,												
_	254.6	loose to compact, very moist												
		SAND AND GRAVEL , grey, fine-grained, loose to compact, wet	0.00											
		, .	0 - 0 0 0 0										$\lfloor $	
− 1	254.0		0000											
	204.0	End of test pit at 1.2 m bgs.	e · · · · o										Ħ	
-														
-													-	
-													$ \cdot $	
-2													$ \cdot $	
-														
													П	
- 3														
-														
-													-	
-														
-														
-4													$ _{\perp}$	
													П	
-														
5		<u> </u>							EGEND	I	l		닉	
<u>NO1</u>									er Samp ore (eg.		SS Split Spoon O. etc.)	ST Shelby TubeVN Vane Sample		
lím	nust be rea	erpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138	ÁΩ	s. Test	t pit lo	og	OTHE	R TE	STS		•			
2) To 3) W	est pit is b /ater obse	ased on observations of the excavator resistance. Fived near 0.6 m bgs upon completion of excavation s below ground surface.					H Hy	/drome		CI	Consolidation Consolidated [
4) bo 5) G	gs denote eodetic el	s below ground surface. evations surveyed using a SOKKIA GCX2 Receiver	<u>.</u>					eve An nit Wei	ialysis ight			Jndrained Triaxial d Undrained Triaxial		
ĺ		· -					ΡFie	eld Per	meability neability	y U	C Unconfined Co S Direct Shear			
						١	NATI	ER LE	VELS			_		
							∇ A	ppare	nt	▼ Me	easured	Artesian (see Notes)		

•	*	(О.

TP205

PR	OJECT	Hunter Farm							PF	ROJECT NO. LON-21008138-A0
	`	auburn Developments Inc.								ATUM <u>Geodetic</u>
LO	CATION	Marion Street, Dorchester, ON		DAT	ES: E			Augus		
Đ			STRAT	W E L L			PLES R E	N	B U L K	SHEAR STRENGTH S Field Vane Test (#=Sensitivity) Penetrometer Torvane
DHPLI	AT-ON	STRATA DESCRIPTION	A P	LL LOG	T Y P E	NUMBER	RECOVERY	VALUE (blows) or	DENS-	40 80 kPa Atterberg Limits and Moisture W _P W W _L
(m) -0 -	(m) 255.4		Ď T	G		R	(mm) or (%)	RQD (%)	† Y (kN/m3)	SPT N Value
- - - -	254.2	PEAT , black, fibrous, wet	\$							
- - - - - -		MARL , grey, mixed alluvial clay/silt, wet	\$							
- -3 -	251.9 251.8	SAND AND GRAVEL, grey, wet	8.555555555555555555555555555555555555							
- -4 - -		End of test pit at 3.6 m bgs.								- - - - -
5			1					EGEND	lo [7]	CC Colit Cocoo
1) To m 2) To 3) W 4) bo 5) G	rES est pit intended to the content of the content	erpretation requires assistance by EXP before use be ad in conjunction with EXP Report LON-21008138-, assed on observations of the excavator resistance, erved near 1.2 m bgs, test pit caved upon completions below ground surface. evations surveyed using a SOKKIA GCX2 Receiver	y others A0. n of exca	avation	pit log	OTHI GSI HH! SSI YUI PFI KLa	Rock C ER TE: pecific ydrome eve An nit Wei eld Per	Gravity eter alysis ight meability NELS	BQ, NG CI CI UI y US	SS Split Spoon ST Shelby Tube VN Vane Sample Consolidation Consolidated Drained Triaxial U Consolidated Undrained Triaxial U Unconsolidated Undrained Triaxial C Unconfined Compression S Direct Shear Artesian (see Notes)

ex	0.

TP206

	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0																
	-													2100	8138	-A0	_
	`	uburn Developments Inc.		D 4 T			4:	_		TUM							-
LO	CATION	Marion Street, Dorchester, ON		DAT	E5: I	Excava	ation _	Augus		21	Water Level SHEAR STRENGTH						
DEPTH	™>⊄⊢−OZ		STRAT	W E L L			PLES RECOVERY	N	BULK		Field	Vane 1 meter	Test ((#=Se Torv	ensiti vane	• •	
1	I	STRATA DESCRIPTION	Å		T Y P E	ÜM	ν	(blows)	E	A4	40.000	40	ito o	_	80 kP		-
••	N	DESCRIPTION	P	C	E	NUMBER	R	or	ロயヱめート≻	Αι	.terbei	rg Lim W _P	w \		oistui	re	
(m) -0 -	(m) 255.5		ቅ			K	(mm) or (%)	(%)	Ť Y (kN/m3)		T N V	alue 20		⊣ ¯ Dynar 30	nic C	one	
		PEAT , black, fibrous, wet	\$ \$ \$ \$ \$ \$ \$ \$														┧╽
			\$ \$ \$										\mathbf{H}	Н		+H	+
			\$									Ш			Ш	Ш] [
-			\$									+++	\mathbf{H}		+++	+H	11
-			<pre></pre>										Ш	Ш		\blacksquare	74
-1			\$									Ш	Ш			Ш	╛╛
			\$										++	++		+	+
-			\$ \$ \$ \$									Ш					1 1
-	254.0		\$ \$ \$ \$ \$ \$													+H	-
-		MARL , grey, mixed alluvial clay/silt, wet	\$ \$ \$ \$ \$ \$									Ш					4
			\$ \$ \$ \$														╛╻
			<pre>{</pre>										\mathbf{H}	++		$+\!\!+\!\!+\!\!+$	-11
-2			<pre></pre>										Ш	Ш		Ш	11
-			<pre></pre>													+	┨┨
-			\$												Ш	Ш	4
			\$ \$ \$ \$ \$ \$									Ш	Ш	++	+++	+H	11
			<pre></pre>										\Box			+	\exists]
-			<pre></pre>										Ш			Ш	11
-3			<pre></pre>								+++	+++	++	++	+++	+	
-			<pre></pre>										Ш			Ш	1 1
			\$ \$ \$ \$ \$ \$														1]
	252.0 251.9	SAND AND GRAVEL , grey, wet	\$ \$													+H	41
	201.0	End of test pit at 3.6 m bgs.	.0.5.0														$\dagger \dagger$
-																	\mathbb{H}
-4																	14
-																	11
-																	
-																	
_																	
5_								EGEND Jer Samp		SS 5~	dit Cna	or		ST SI	helby	Tubo	
<u>NO1</u>		repretation requires essistance by EVD before the	oth c	T4	nit I -	IШБ		ore (eg. l		SS Sp , etc.)	ли Эро	OH			ane S		
m	nust be rea	rpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-A	0. 0.	i. rest	pit ioc	ТОТН	ER TE		0	0 1							
2) Te 3) W	est pit is b /ater obse	ased on observations of the excavator resistance. rved near 1.5 m bgs, test pit caved upon completion	of exc	avatior	١.	HH	/drome			Consoli) Conso			ned T	riaxia	ıl		
4) bo	gs denotes	rved near 1.5 m bgs, test pit caved upon completion s below ground surface. evations surveyed using a SOKKIA GCX2 Receiver.				S Sieve Analysis CU Consolidated Undrained Triaxial Y Unit Weight UU Unconsolidated Undrained Triaxial											
", "	.5546116 GI	S.a Our repositioning a Contract COME MODIVER.				P Field Permeability UC Unconfined Compression											
						K Lab Permeability DS Direct Shear WATER LEVELS											
							ER LE Apparei		▼ Me	easured	t	Ī	Arte	esian	(see l	Notes	;)

ex	p.

TP207

											Silect 1 of		
	PROJECT Hunter Farm Project No. LON-21008138-A0												
CL	IENT _A	uburn Developments Inc.							_ DA	TUM <u>Geod</u>	letic		
LO	CATION	Marion Street, Dorchester, ON		DAT	ES: E	Excava	ation _	Augus	t 4, 202	<u>21</u> Wa	ater Level		
	Ę			SAM	IPLES		B		AR STRENGTH				
₽	M-M>4H-OZ		ST RAT	¥			R		BULK	■ S Field Val ■ Penetrome	ne Test (#=Sensitivity) ter ■ Torvane		
Оше⊢т	Å	STRATA	^	W L L	Т.	N	RECOVERY	N VALUE			40 , 80 kPa		
н	i	DESCRIPTION	A P	I	T P E	NUMBER	ΙĚ	(blows)	N E		Limits and Moisture		
			Ē	L OG	E	Ē	R Y	or RQD	DEZS-TY	'	N _P W W _L		
(m)	(m)		Ť				(mm)	(%)	-	SPT N Value 10			
-0-	255.0	TOPSOIL - 500 mm	~ ~ ~		П		(%)		(kN/m3)	10 ;	20 , 30 , 40		
F			\\ \times \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\										
_			~ ~										
	254.5	MARL , grey, mixed alluvial clay/silt, wet	\$ 8 8										
		, 3 ,	~ ~										
-	254.0		\$\$\$\$\$ \$\$\$\$\$										
-1	254.0	SILTY SAND , brown, loose, very moist to wet		1									
	253.8	End of test pit at 1.2 m bgs.	1344	1									
-													
-													
•													
-2													
-													
-													
-													
-													
-3													
J													
-													
-													
-													
-4													
-													
-													
5						SAM		GEND					
NOT	TES					$\boxtimes A$	AS Aug	er Samp		SS Split Spoon			
1) T	est pit inte	erpretation requires assistance by EXP before use by		s. Test	pit log		Rock C ER TE:	ore (eg. STS	BQ, NG	l, etc.)	VN Vane Sample		
2) T	est pit is b	ad in conjunction with EXP Report LON-21008138-A ased on observations of the excavator resistance.				G S	pecific	Gravity		Consolidation	Project Trickiel		
3) W 4) b	ater obse gs denote	rved near 0.5 m bgs, test pit caved upon completions below ground surface.	of exc	avatior	1.	S Si	ydrome eve An	alysis	Cl		Indrained Triaxial		
5) G	eodetic el	evations surveyed using a SOKKIA GCX2 Receiver.					nit Wei eld Per	igȟt meabilitv		J Unconsolidated C Unconfined Co	d Undrained Triaxial Impression		
						K La	b Perr	neability	, DS	S Direct Shear			
							ER LE Apparei		▼ Me	easured	▲ Artesian (see Notes)		

ex	0.

TP208

DD	OIFCT	Humber Form							DD			- NIC			NI 2	400	0420		
	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0 CLIENT Auburn Developments Inc. DATUM Geodetic																		
	`	Marion Street, Dorchester, ON		DAT	EQ. [- - - -	ation	Augus			_				_eve				_
		Manor Street, Dorchester, ON		Augus		<u>. </u>	_						_		=				
	ZO1> <mr< td=""><td></td><td>SAM</td><td>PLES</td><td></td><td>אררא</td><td>• 9</td><td>3 Fi</td><td></td><td></td><td></td><td></td><td>NGTI #=Se</td><td>H ensiti</td><td>ivity)</td><td></td></mr<>		SAM	PLES		אררא	• 9	3 Fi					NGTI #=Se	H ensiti	ivity)				
Ē	Ž		STRAT	W E L L		N.	RHCO>HR>	N	k			etro				Torv		•	
ОШР⊢Т	Î	STRATA	X	E	Ţ	Ü	Ö	(blows)	E				4(80 ķF		. ∐
н	Ö	DESCRIPTION	P	LOG	T P E	NUMBER	Ė	or	N Ş	4	Atte	erbei			san V W		oistu	re	
	(m)		호	G		R	(mm)	RQD (%)	DWZ%-FY	. ا	e DT	N V	H	·	\rightarrow	I —	nic C	`ono	
(m) - 0 -	255.4		·				`or´ (%)		ı (kN/m3)		1(20		3		40		Ш
		PEAT , black, fibrous, wet	\$							\vdash	Н		Н	+		$+\!\!+$	₩		+
Ī			\$								\blacksquare			\blacksquare		+	\Box		$\exists 1$
-			<pre>{</pre>							Ш	Ш			Ш		#	Ш		∄ 1
-			\$ \$ \$ \$ \$ \$							₩	Н			+		+			\dashv
-			\$							\vdash	Н	+		+		+	Н		\mathbb{H} -
-1			\$							Ш	Щ			Ħ		#	Щ		
_	254.2		\$ \$ \$							Ш	Ш		Ш	\dagger		#	Ш		
		MARL , grey, mixed alluvial clay/silt, wet	\$ \$ \$ \$ \$ \$							\vdash	Н	+	Н	$^{+}$		+	₩		+
			\$ \$ \$ \$ \$ \$							H	П	\perp	Н	\blacksquare		4	Ш		$\exists 1$
-			\$							Ш	Щ		Ш	Ħ		#	ш		#1
-			\$ \$ \$ \$ \$ \$							Ш	Ш		Ш	\pm		\pm			┨┨
-2			\$ \$ \$ \$ \$ \$							₩	Н	+	Н	+		+	₩	Н	\dashv
-			\$								П		П	Ħ		#	\blacksquare		∏ -
-			\$							Ш	Ш		Ш	\parallel		#	Ш		┇.
			\$							Ш	Ш		Ш	†		\pm			∄』
			\$							\vdash	Н		Н	+		+	\vdash		\dashv
-			\$ \$ \$ \$ \$ \$ \$								H		П	Ħ		#	Щ		7
-3			\$ \$ \$ \$ \$ \$ \$ \$							Ш	Ш		Ш	#		#	Ш		
-			\$ \$ \$ \$ \$ \$ \$ \$							\vdash	Н		Н	+		\pm	Н		H
-			\$ \$ \$ \$							\vdash	Н			\blacksquare		+	\mathbf{H}		
-	251.7		\$ \$ \$ \$ \$ \$								П		П	\sharp		#	Ш		┨.
	251.6	SANDY SILT , brown, loose, very moist	∴ ∴ ∴ . ∴ .							Ш	Ш		Ш	\parallel		1	Ш		Ш
,		End of test pit at 3.75 m bgs.																	
- 4																			
-																			
-																			
-																			
-																			-
5						CARA		EGEND											Щ
NOT	TES					\boxtimes A	S Aug	er Samp		SS S		Spo	on				nelby		
1) T	est pit inte	erpretation requires assistance by EXP before use by	others	. Test	pit log		Rock C ER TE	ore (eg. STS	BQ, NQ	, etc.)			ļ	ШV	N Va	ane S	ampl	е
l 2) T	est pit is b	ad in conjunction with EXP Report LON-21008138-A ased on observations of the excavator resistance.				GS	pecific	Gravity		Cons				oin :	.d T	iord-	J		
3) V 4) b	rater obse	rved near 1.2 m bgs, test pit caved upon completion s below ground surface.	ydrome eve An	alysis	Cl	D Cor J Cor	nsoli	idate	d Ur	ndra	ined	Tria	xial						
[5) G	ieodetic el	evations surveyed using a SOKKIA GCX2 Receiver.	Y Unit Weight UU Unconsolidated Undrained Triaxial P Field Permeability UC Unconfined Compression																
						K Lab Permeability DS Direct Shear													
							ER LE		▼ Me	easur	red		Ī		Artes	sian	(see	Notes	s)

ex	p.

TP209

	_	Hunter Farm									LON-21008138-A	<u> </u>
		Auburn Developments Inc.								ATUM <u>Geo</u>		
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	Excava	ation _	Augus	t 4, 202	<u>21</u> W	ater Level	
	Ē			SAN	IPLES		B U L K		AR STRENGTH			
Б	M-M-02		ST RATA	W			R	N	L K	■ S Field Va	ne Test (#=Sensitivit eter ■ Torvane	ty)
DHPH	Ă	STRATA	🛊	W L L	т	N	Ş	VALUE	l		40 80 kPa	
Ĥ	Ö	DESCRIPTION	P		T Y P E	NUMBER	RECOVERY	(blows) or	K	Atterberg	Limits and Moisture	_
			P	L O G	=	E		RQD	DENS-TY		W _P W W _L	
(m)	(m) 255.4						(mm) or (%)	(%)	Ý (kN/m3)	SPT N Valu	ue × Dynamic Con 20 30 40	ne
-0 -	200.4	TOPSOIL - 300 mm	7/1/2 · · · · · · · · · · · · · · · · · · ·				(70)		(KIWIIIO)			
-	255.1		17. 71.17	1								- -
-		SILTY SAND , brown, loose to compact, very	1:1]								Ш-
_		moist										Ш.
				1								\coprod
	254.4											\mathbb{H}
_1	201.1	End of test pit at 1.0 m bgs.	1									***
-												-
-												-
-												-
_												-
-2												
_												
_												
-												-
-												-
-												-
-3												-
-												-
_												_
												-
-4												-
-												-
-												-
_												-
_												_
_												
J								EGEND Jer Samp		SS Split Spoor	n ■ ST Shelby Tu	ıhe
NOT		erpretation requires assistance by EXP before use b	nv other	s Toet	nit lo	. Ⅲ F	Rock C	ore (eg.	BQ, NC		☐ VN Vane San	
ĺm	ust be rea	ad in conjunction with EXP Report LON-21008138- based on observations of the excavator resistance.	-A0.	∍. 1€Sl	ριι Ι <i>Ο</i> (ТОІН	ER TE	STS Gravity	C	Consolidation		
3) Te	est pit ope	nased on observations of the excavator resistance. and dry upon completion of excavation.				HH	ydrome	eter	CI	D Consolidated I		
4) bo	is aenote:	s pelow ground surface.	r									
 4) bgs denotes below ground surface. 5) Geodetic elevations surveyed using a SOKKIA GCX2 Receiver. S Sieve Analysis												
0, 0	eodetic el	evations surveyed using a SOKKIA GCX2 Receiver				PFi	eld Pei	ignt meability neability	y U	O Unconsolidate C Unconfined Co S Direct Shear		

TP210

	_	Hunter Farm								ROJECT NO. <u>LON-21008138-A0</u>
CL	IENT _A	uburn Developments Inc.								ATUM <u>Geodetic</u>
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	Exc	avatior	Augus	t 4, 202	21 Water Level
,	ZO1> <mr< td=""><td></td><td>STRAT</td><td>w</td><td></td><td>S</td><td>AMPLE</td><td></td><td>B U L K</td><td>SHEAR STRENGTH S Field Vane Test (#=Sensitivity)</td></mr<>		STRAT	w		S	AMPLE		B U L K	SHEAR STRENGTH S Field Vane Test (#=Sensitivity)
ОШР⊢Н	V A		A	W E L	l _	١,	RECOVERY	N		▲ Penetrometer ■ Torvane
Ή	I	STRATA DESCRIPTION	Å		T Y P E		۸ آ ۱	(blows)	Ĕ	40 , 80 kPa Atterberg Limits and Moisture
	N	DESCRIPTION	P	G C	E		N COVERY	or RQD	DENS-TY	W _P W W _L
(m)	(m)		P P			'	(mn	1) (%)	ΙŢ	● SPT N Value × Dynamic Cone
-0 -	256.4	DEAT block fibrous wet	~ <i>~</i>		+-		(%	<u> </u>	(kN/m3)	10 20 30 40
		PEAT , black, fibrous, wet	\$							
			\$							
			\$							
-			5 5 5 6							
-			<pre></pre>							
-1	255.4	MARL , grey, mixed alluvial clay/silt, wet	\$ \$ \$ \$							
-		marke, groy, mixed and viai didy/one, wee	<pre>\$ { { } { } { } { }</pre>							
_			\$							
			\$							
			\$							
-			\$							
-2			\$							
-			\$							[-++++++++++++++++++++++++++++++++++++
-			\$ \$							
_			\$ \$ \$ \$ \$							
			\$ \$ \$ \$ \$ \$ \$							
			\$ \$							
-3			\$							
-			5							
-	252.9		\$ \$ \$ \$							
	252.8	SILTY SAND , brown, loose, wet End of test pit at 3.6 m bgs.			++					
-		Zild of toot pit at 0.0 iii ogo.								-
-4										-
_										-
-										
5								LEGEND		
<u>NO1</u>						ΙП		uger Sam _l Core (eg.		SS Split Spoon ST Shelby Tube VN Vane Sample
l m	nust he rea	rpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-A	Λ			o.	THER T	ESTS		
(2) To (3) W	est pit is b /ater obse	ased on observations of the excavator resistance. rved near 1.0 m bgs, test pit caved upon completion s below ground surface.	of exc	avatio	n.		l Hydroi		CI	Consolidation Consolidated Drained Triaxial
4) bo 5) G	gs denote: ieodetic el	s below ground surface. evations surveyed using a SOKKIA GCX2 Receiver.				S	Sieve / Unit W	Analysis /eight		J Consolidated Undrained Triaxial J Unconsolidated Undrained Triaxial
		-				l P	Field F	ermeabilit ermeability	y U	C Unconfined Compression S Direct Shear
						W	ATER I	EVELS		
						∇	Appa	rent	▼ M	easured Ā Artesian (see Notes)

ex	0.

TP211

PR	OJECT	Hunter Farm							PE		IFC	т	NO	,	1.	ON.	-210	081	 38-/	<u></u>	\dashv
	-	Auburn Developments Inc.											Ge	_			<u>-2 IL</u>	<i>,</i> 00 I	30-	10	-
		Marion Street, Dorchester, ON		DAT	ES:	Excav	ation _	Augus								Le	/el				_
	E		٦			SAN	IPLES		В				SH	ΕA	R S	TRI	ENG	тн			П
₽	шш		STRAT	Ψ					l L K				ld \ tron					Sens rvan		ty)	
DEPTH	Å T	STRATA	1	W E L L	I	Ŋ	Ğ	N VALUE	l					4		_			ķPa		
Ĥ	ZO-	DESCRIPTION	^ P	LOG	T P E	NUMBER	RECOVERY	(blows) or	DE NS-		Αı	ter	ber					Mois	ture)	11
	(m)		<u> </u>	Ğ	-	Ŕ	(mm)	RQD (%)	¦		95	т т	N Va	H	_	W 0	⊣_	amic	· Cai	20	
(m) -0 -	255.9						`or´ (%)	1	(kN/m3)		<u>ا</u> ت	10	• • •	2	_		30		40	 	Ш
_	055.0	TOPSOIL - 300 mm	17 · 71·14							Ħ						Ш			Ш	Ш	11
	255.6	SAND AND GRAVEL , brown, loose to compact,	0.00							L				_					Ш	Ш	1
		wet	0.00							H									\coprod		1]
			0.000							L			\blacksquare			Н	\parallel		\coprod	\pm	}]
1	254.9		0000							\vdash			Н			\mathbb{H}	+		++	+	$\ \ $
		End of test pit at 1.0 m bgs.																			
_																					
_																					
-2																					П
-																					
-																					-
-																					$ \uparrow $
-																					-
-3																					-
-																					-
_																					-
-																					$ \cdot $
-																					-
-4																					Н
-																					
-																					$ \cdot $
-																					
-																					$ \cdot $
5						0.41	DI E	FOEND													Ц
NOT	TES .					→ 🖂 A	AS Aug	EGEND ger Samp				olit S	Spo	on				Shell			
1) T	 est pit inte	erpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-	others	s. Test	pit lo	ור	Rock C ER TE	ore (eg. STS	BQ, NG	≀, et	C.)					Ш	۷N	Vane	: Sar	mple	'
l 2) T	est pit is b	ad in conjunction with EXP Report LON-2 1006 136-7 pased on observations of the excavator resistance. Prived near 0.3 m bgs upon completion of excavation.				GS		Gravity					tion late		rain	ed ⁻	Γriax	tial			
4) b	gs denote	s below ground surface. evations surveyed using a SOKKIA GCX2 Receiver.				S Si	eve Ar nit We	nalysis	CI	U C	ons	olid	late	U b	ndra	aine	d Tr	iaxial Triax			
´		, , ,				PFi	eld Pe	rmeability neability	y U	CU	nco	nfir		Cor		essi		u/			
						WAT	ER LE	VELS					ıcaı	_	-		•	,			
							⊏r ∟⊏ Appare		▼ M	eas	ure	d		7	Š.	Art	esia	n (se	e No	otes)	,

TP212

	_	Hunter Farm								OJEC				-2100	08138	3-A0	
	· · · · · · · · · · · · · · · · · · ·	uburn Developments Inc.								TUM							—
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	Exca	ation ₋	Augus	t 4, 202	21		Wate	r Le	/el _			
D	ZOID <mr< td=""><td></td><td>STRATA</td><td>м</td><td></td><td>SAI</td><td>MPLES R</td><td></td><td>BULK</td><td></td><td>Field</td><td>HEAR Vane meter</td><td>Test</td><td>(#=S</td><td></td><td>ivity)</td><td></td></mr<>		STRATA	м		SAI	MPLES R		BULK		Field	HEAR Vane meter	Test	(#=S		ivity)	
Ошр⊢н	Ă	CTDATA	Ā	W E L L	١.	N	5	N VALUE		^ P6	Helio			ı ı or		٦-	
H	ˈˈ	STRATA DESCRIPTION	1		T Y P E	M	ĮΫ	(blows)	Ĕ	Δ1	tterbe	4 <u>0</u> rg Li n	nits a	nd M	80 ķl Ioistu		-
	Ň		<u>P</u>	L OG	Ē	NUMBER	RECOVERY	or RQD	ロ田宮のートと	'``		-	W		.0.0		
(m)	(m)		Þ			``	(mm) or	(%)	Y	● SF	T N V	⊢ ′alue	×ι	⊣ Dyna	mic C	one	
- 0-	254.9	DEAT block fibrous wat	~ ~		.		(%)		(kN/m3)	.	10	20	111	30	40		Н
L		PEAT , black, fibrous, wet	\$ \$ \$												Ш	Ш	Ш
			~ ~								+++		+	+	₩	Н	H
-			\$ \$ \$									Ш	Ш	Ш	Ш	Ш	#1
-			\$ \$ \$								+++	+++	+H	+	+++	₩	\mathbb{H}
-			~ ~									Ш				Ш	
4			\$ \$ \$							\mathbb{H}	Ш	+++	+H	+	+++	++	Н
-1	253.7		\$ \$ \$ \$ \$ \$									Ш				Ш	
-	233.1	MARL, grey, mixed alluvial clay/silt, wet	\$ \$												Ш	Ш	ĦŦ
-			\$ \$ \$								+++	+++	+	+++	+++	₩	\mathbb{H}
_			~ ~								Ш	Ш		Ш	Ш	Ш	Ħ.
			\$ \$ \$ \$ \$ \$								+++	+HH	+H		+H	Ш	H
_			\$ \$ \$ \$ \$ \$											Ш		Ш	#1
-2			~ ~							+++	+++	+++	+	+	+++	H	H
-			\$ \$ \$														Н-
_			\$ \$ \$										Ш	Ш	Ш	Ш	
			~ ~								HH	+HH	+H	+	+++	₩	H
-			\$ \$ \$										Ш	Ш	Ш	Ш	#1
-			\$ \$ \$ \$ \$ \$								+++		+	+	+++	Н	H +
-3	251.9	Ford of Assat with a 4.0.0 we have done to a server	~ ~														Щ
-		End of test pit at 3.0 m bgs due to cave.															-
-4																	
7																	
-																	11
-																	1-
_																	-
_																	
5								EGEND		_			_				
m	 est pit inte nust be rea	erpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-A	others	s. Test	pit lo	g OTH	Rock Č IER TE	ger Samp Fore (eg. l STS Gravity	BQ, NC	SS Sp (, etc.) Consol	·				helby ane s		
3) W 4) bo	/ater obse gs denote:	ased on observations of the excavator resistance. In excavate beyond 3.0 In below ground surface. In evations surveyed using a SOKKIA GCX2 Receiver.	_	due to	o cav	e. H F S S Y U P F	lydrome lieve Ar Jnit We lield Pe	eter nalysis	CI Cl Ul / UC	Consol Cons Cons Unco Unco Direc	olidate olidate nsolid nfined	ed Dra ed Und ated U I Comp	draine Indrai	d Tria	axial	ıl	
							TER LE Appare		▼ Me	easure	d	Ā	Art	esian	(see	Notes	s)

ex	0.

TP213

	_	Hunter Farm								ROJECT NO. <u>LON-21008138-A0</u>
		Auburn Developments Inc.						_		ATUM <u>Geodetic</u>
LO	CATION	Marion Street, Dorchester, ON		DAI	ES:	Exca	vation	Augus		21 Water Level
	ZOD<		STRATA	w		SA	MPLES	; 	BULK	SHEAR STRENGTH S Field Vane Test (#=Sensitivity)
DE PTH	Ā		🍒	W E L	١_	N	RECOVERY	N VALUE	l	▲ Penetrometer ■ Torvane
ΤH	Ĭ	STRATA DESCRIPTION			T Y P E	NUMBER	2	(blows)	DENS-TY	40 80 kPa Atterberg Limits and Moisture
	Ň	2-20-1	<u>P</u>	G C	Ė		R	or RQD	S L	W _P W W _L
(m)	(m)		Þ			-`	(mm)		-	SPT N Value
-0	254.7	PEAT , black, fibrous, wet	~ ~ ~		+		(%)		(kN/m3)) 10 20 30 40
-		,,,	\$ \$ \$ \$							
-	254.2		\$ \$ \$ \$							
	234.2	MARL , grey, mixed alluvial clay/silt, wet	2 2	1						
			\$ \$ \$ \$ \$ \$							
	253.7		\$ \$ \$							
1		End of test pit at 1.0 m bgs.	1							
-										
-										-
-										-
-										-
-2										-
-										-
_										
-3										-
-										-
-										-
-										-
-										-
-4										
-										-
5-1		<u> </u>	<u> </u>	<u> </u>	1	SA	<u> </u>	<u> </u> EGEND	L	
NO1						_ I □		ger Samp Core (eg.		SS Split Spoon ST Shelby Tube Q. etc.) ST Shelby Tube D. VN Vane Sample
ĺm	iust be rea	erpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138-	y others 40.	s. Test	t pit lo	^{og} o⊤	HER TE	STS	•	·
2) Te	est pit is b ater obse	pased on observations of the excavator resistance. Brived near 0.5 m bgs, test pit caved upon completion		avatio	n.	Н	Hydrom (eter	CI	D Consolidated Drained Triaxial
4) bo	gs denote:	s below ground surface. evations surveyed using a SOKKIA GCX2 Receiver.				S	Sieve Ar Unit We	nalysis eight		U Consolidated Undrained Triaxial U Unconsolidated Undrained Triaxial
						ΙÞ	Field Pe	rmeabilit	y U	C Unconfined Compression
						W	ATER LE	EVELS		
- - - - 1) Te 2) Te 3) W	est pit inte just be rea est pit is b ater obse as denote:	ad in conjunction with EXP Report LON-21008138- <i>i</i> assed on observations of the excavator resistance. erved near 0.5 m bgs, test pit caved upon completions below ground surface.	A0. of exc			OT GHS PK	AS Aug Rock C HER TE Specific Hydrom Sieve Ar Unit We Field Per Lab Per	ger Samp Core (eg. STS Gravity eter nalysis eight rmeability EVELS	BQ, NC CI CI UI y UC	Q, etc.) Consolidation D Consolidated Drained Triaxial U Consolidated Undrained Triaxial U Unconsolidated Undrained Triaxial

TP214

	PROJECT Hunter Farm PROJECT NO. LON-21008138-A0 CLIENT Auburn Developments Inc. DATUM Geodetic DOCATION Marion Street, Dorchester, ON DATES: Excavation August 4, 2021 Water Level																					
						_																
LO	CATION	Marion Street, Dorchester, ON		DAI	ES:	Exc	avatio	n <u>Augus</u>			1 Water Level											
	E		Ş			S	AMPLI	_	B U K	S S Field		STREN		ivity)								
P	™>4⊢−0 z		ST RATA	W E L L			F	N	k	▲ Penetro		•		vity,								
ОШР⊢Т	Ť	STRATA	Î	E	Ţ		ן ל	VALUE	₽	1	40		80 ķF									
н	Ö	DESCRIPTION	l P	LOG	Y P E	:	FINANCE NAME OF THE PROPERTY O	(blows) or	Ñ S	Atterbe		its and W W _I	l Moistu	re								
	(m)		卢	Ğ		i	₹ Y (m)		DENS-TY	 ● SPT N \	. ⊢											
(m) -0 -	256.7		<u>L'</u>				(%	r (/9)	t (kN/m3)		20	30	namic C 40									
١		PEAT , black, fibrous, wet	\$ \$ \$								+++											
			\$ \$ \$ \$ \$ \$ \$																			
-	256.2		~ ~								Ш			ш								
-		SILTY SAND , grey, loose, wet	1.	i							+++											
-																						
-1														Ш.								
-																						
-																						
-																						
-2	254.7													шЦ								
_		End of test pit at 2.0 m bgs.																				
-																						
-																						
-																						
-3														-								
-																						
-																						
-																						
-4														-								
-																						
-																						
-																						
5			<u> </u>		Ш	1	11/2:	1.505::5														
NOT	TES.						1 AS A	LEGEND Auger Samp		SS Split Sp	oon	■ ST	Shelby	Tube								
1) To	est pit inte	rpretation requires assistance by EXP before use by	others	s. Test	pit lo	ي ا	Rock	Core (eg.					Vane S									
2) T	nust be rea est pit is b	ad in conjunction with EXP Report LON-21008138-A ased on observations of the excavator resistance.			Speci	TESTS fic Gravity		Consolidatio														
3 W	ater obse	rved near 0.5 m bgs, test pit caved upon completion s below ground surface.	H Hydrometer CD Consolidated Drained Triaxial S Sieve Analysis CU Consolidated Undrained Triaxial																			
5) G	eodetic el	evations surveyed using a SOKKIA GCX2 Receiver.				γ	Unit V	Veight	Ül	J Unconsolio	lated U	ndraine	d Triaxia	I								
								Permeabilit ermeability		C Unconfine S Direct She		ression										
						W	ATER	LEVELS			_											
						WATER LEVELS																

ex	0.

TP215

PR	OJECT	Hunter Farm							PF	 RO.1	EC.	TN	— O.	,		 N-21	1008	138	- A 0	
		Auburn Developments Inc.										G				<u></u>		100	7.0	
		Marion Street, Dorchester, ON		DAT	ES: I	Excava	ation _	Augus								evel				
	Ę		s			SAN	IPLES		B							REN				Τ
	ELEVA	CTDATA	ST RA T	W E L L	Ţ	Ņ	RECOVERY	N VALUE	K	•	S F Per	ield	ome	eter	Tes	t (#= ■ T	orva	-		
H	A T O N	STRATA DESCRIPTION	A P		T Y P E	NUMBER	¥	(blows)	DE NS-	H	Att	erbe		40 Lim	nits	and		0 kP istur		┨
			É	L OG	E	R		or RQD	S T					<u> </u>	╼-	W _L	_			
(m)	(m) 266.5		Т				(mm) or (%)	(%)	Ť Y (kN/m3)			ΓΝ\ Ι <mark></mark> 0		је 20	×	Dyı 30	nam	ic Co 40	one	
-0-	266.3	TOPSOIL - 200 mm	17. 19.17 							Н	\mathbb{H}	\mathbf{H}		+		oxdapprox	Н	\blacksquare	+	\mathbb{H}
_		SILTY SAND , brown, trace gravel, loose to compact, moist to very moist	1.3							H	\mathbb{H}	H	+	+	H	\mathbf{H}		\mathbb{H}	+	\mathbb{H}^{-}
-		,								H	\blacksquare	H	\blacksquare	H	H	\blacksquare	Н	\blacksquare	\blacksquare	\mathbb{H}^{-}
_										Н	\mp	Н		+		\mp	Н	\Box	+	∦ ⁻
										Ш	Ħ	Ш				\ddagger		Ш		
-1										Ш	#		\dagger	\dagger	\dagger	#			\parallel	Ц−
-										Ш	†	Ш		\parallel		\pm	Ш	Ш	\parallel	∦-
-										Ш	\pm	Ш				+		Ш		∄-
-										Ш	$^{+}$			\mathbf{H}		+		+		∄-
-										Н	+			+		+		+		H -
-2										H	H	Н		H	\blacksquare	\blacksquare		\blacksquare	\blacksquare	-
_										Ш	Ħ	Н	\blacksquare	Ħ		\mp	Н	\Box	\blacksquare	∏ -
_										Ш	Ħ	Ш		#		\mp		Ш		Ϊ.
_										Ш	\parallel			\parallel		\pm		Ш		╽.
_										Ш	#	Ш	\pm	#		#	Ш	Ш	\parallel	╽.
-3										Ш	\pm	Ш		\pm				Ш		<u> </u>
_		- becoming wet at 3.0 m bgs								Ш	Н	Ш		\pm		\pm	Ш	Ш		∄.
										Н	+	\Box				+		+		\mathbb{H}_{-}
	263.0	End of test pit at 3.5 m bgs.			\vdash					Ш				Ш						4
-																				-
																				-
- 4																				-
_																				-
-																				-
-																				-
-																				-
5				<u> </u>	Ш	SAM	<u> </u> PLE LI	<u> </u> EGEND	<u> </u>											
NO			_				AS Aug	ger Samp ore (eg.				it Sp	oon	1				elby ⁻ ne Sa		
ĺ'n	nusť be re	erpretation requires assistance by EXP before use bad in conjunction with EXP Report LON-21008138-	pit log	у отн	ER TE	STS			-	م المحاد	_					,	-1-			
(3 X	Vater obse	pased on observations of the excavator resistance. erved near 3.0 m bgs upon completion of excavation		HH	ydrome		CI	O Co	onso		ed [l Tria		,				
4) b 5) G	gs denote Seodetic el	s below ground surface. evations surveyed using a SOKKIA GCX2 Receivel	· <u>.</u>			γ υ	eve Ar nit We	ight	Ul	J Ur	ncon	solic	date	d U	ndra		d Tri	ial axial		
				P Fi K La	eld Per ab Perr	rmeability neability	y UC DS			fine She		omp	res	sion						
							ER LE		▼ M	eası	ıred			Ť	Aı	rtesi	an (:	see N	Votes	s)

ex	p.

TP216

	-	Hunter Farm							PR	ROJECT NO. <u>LON-21008138-A0</u>	
CL	IENT _	uburn Developments Inc.								ATUM <u>Geodetic</u>	
LO	CATION	Marion Street, Dorchester, ON		DAT	ES:	Exca	vation	Augus	t 4, 202	21 Water Level	
	Ę		s			SA	MPLES	1	В	SHEAR STRENGTH	
Б	™>⋖⊢−0		ST RAT	Ψ			R	N	BULK	◆ S Field Vane Test (#=Sensitivity) ▲ Penetrometer ■ Torvane	
ОШР⊢Т	Å	STRATA	^	W E L L	т	N	Ö	VALUE	l	40 80 kPa	
Ĥ	Ö	DESCRIPTION	A		T Y P E	NUMBER	RECOVERY	(blows)	K	Atterberg Limits and Moisture	
			i P	L O G	E	F		RQD	DENS-TY	W _P W W _L	
(m)	(m) 267.3		T				(mm) or (%)	(%)	Ϋ́ (kN/m3)	● SPT N Value × Dynamic Cone 10 20 30 40	
-0-		TOPSOIL - 200 mm	7/ 1/N . · 7/		T		(%)		(KIWIIIO)		
-	267.1	SILTY SAND , brown, trace gravel, trace clay,	1/. \\ /.	1						<u> </u>	
-		loose to compact, moist to very moist		1							
-											
			1:1:							<u> </u>	
-1											
-										<u> </u>	
-				1						┠┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	
-											
_											
۰			1:1							[
-2											
-											
-										<u> </u>	
-										<u> </u>	
-			1.1								
-3											
J										<u> </u>	
-				1							
-										<u> </u>	
-										┠┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	
-4	263.3	End of toot nit at 4.0 m has	<u>lii.</u> E				_				
_		End of test pit at 4.0 m bgs.									
-											
-											
5			1			SAI	<u> </u> MPLF I	 EGEND		<u> </u>	
NO	TES						AS Aug	ger Samp		SS Split Spoon ST Shelby Tube VN Vane Sample	
ľm	nust be re	erpretation requires assistance by EXP before use by ad in conjunction with EXP Report LON-21008138- <i>A</i>	t pit lo	g _{OTI}	HER TE	Core (eg. STS	uw, ING	t, etc.)			
2) T	est pit is b	ased on observations of the excavator resistance. an and dry upon completion of excavation. below ground surface.				G Specific Gravity C Consolidation H Hydrometer CD Consolidated Drained Triaxial					
4) b	gs denote	n and dry upon completion of excavation. s below ground surface. evations surveyed using a SOKKIA GCX2 Receiver.				S	Sieve Ar	nalysis	Cl	U Consolidated Undrained Triaxial	
	COUCIIC EI	ovacións surveyed using a SOMMA GOAZ NECEIVEL.				ΡĖ		rmeability	y UC	U Unconsolidated Undrained Triaxial C Unconfined Compression	
								meability	DS	S Direct Shear	
							TER LE Appare		▼ Me	easured Ā Artesian (see Notes)	

Appendix E – Grain Size Analyses

^{*}ехр.

MECHANICAL GRAIN SIZE ANALYSIS

^{*}ехр.

MECHANICAL GRAIN SIZE ANALYSIS

[®]ехр.

MECHANICAL GRAIN SIZE ANALYSIS

Appendix F – MECP Water Well Record Summary

Sunday, September 5, 2021

8:20:55 PM

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
NORTH DORCHESTER TOW	17 495037 4759176 W	2013/03 6809	0.75			МО	0097 10	7219087 (Z164808) A135911	BRWN SAND GRVL 0022 GREY CLAY TILL 0082 GREY SAND GRVL 0102
NORTH DORCHESTER TOW	17 493597 4759957 W	2008/12 7238						7117778 (Z90466) A069682 A	
NORTH DORCHESTER TOW	17 493620 4760020 W	6607	2.00	0020		MN	0015 13	7115588 (Z86898) A069682	BRWN SAND SLTY 0003 BRWN SILT SNDY 0010 GREY SILT 0021 GREY SILT 0028
NORTH DORCHESTER TOW	17 495178 4759247 W	2005/10 7190	0.79				0010 10	4116326 (Z25566) A029302	BRWN SAND 0020
NORTH DORCHESTER TOW 04 008	17 493699 4759607 W	2008/06 6607	0.75	UK 0003		МО		7116490 (M01798) A067294	BRWN SILT LOAM 0004 BRWN SILT SAND 0005 BRWN SAND SILT GRVL 0007 GREY SILT SAND GRVL 0007
NORTH DORCHESTER TOW TR N 03 007	17 493514 4760058 W	1965/09 3009	6 6	FR 0088	22/27/10/4:0	DO		4102868 ()	CLAY STNS 0056 BRWN LMSN 0060 FSND 0079 BRWN LMSN 0089
NORTH DORCHESTER TOW TR N 03 008	17 493534 4760013 W	1962/03 3117	6	FR 0058	12/30/8/2:30	DO		4102871 ()	LOAM MSND 0008 HPAN STNS 0058 GRVL 0060
NORTH DORCHESTER TOW TR N 03 008	17 493534 4760013 W	1969/08 3009	5 5	FR 0082	23/30/12/5:0	DO		4104788 ()	BRWN CLAY 0016 GREY CLAY MSND STNS 0045 GRVL 0046 GREY CLAY MSND 0079 GREY LMSN 0082
NORTH DORCHESTER TOW TR N 03 008	17 493534 4760123 W	1977/05 5466	5	FR 0082	28/28/4/48:0	DO		4108014 ()	RED CLAY SNDY PCKD 0012 BRWN SAND GRVL CLAY 0020 GREY GRVL CLAY BLDR 0040 GREY GRVL SAND CLAY 0070 GREY GRVL SAND PORS 0082
NORTH DORCHESTER TOW TR N 03 008	17 493534 4760143 W	1977/04 5466	5	FR 0085	30/37/4/48:0	DO		4108013 ()	RED CLAY SNDY PCKD 0015 BRWN SAND LOOS 0020 GREY GRVL CLAY SAND 0085
NORTH DORCHESTER TOW TR N 03 008	17 493744 4760038 W	1988/03 3009	5	FR 0073	28/41/6/1:45	DO		4111206 (23005)	BLCK LOAM 0001 BRWN SAND CLAY 0009 GREY CLAY SAND 0014 GREY CLAY SAND STNS 0070 GREY FGVL SAND SILT 0072 GREY CSND 0073
NORTH DORCHESTER TOW TR N 03 008	17 493484 4760183 W	1970/08 2607	36	FR 0008	8///:	DO		4105190 ()	BRWN MSND 0008 GRVL BLDR 0009 BLUE CLAY BLDR 0020
NORTH DORCHESTER TOW TR N 03 008	17 493514 4760028 W	1954/08 1708	4	FR 0029	29/32/5/5:0	DO		4103066 ()	MSND GRVL 0010 HPAN BLDR 0068 GRVL 0069
NORTH DORCHESTER TOW TR N 03 008	17 493554 4760183 W	1963/06 3009	4 4	FR 0103	50/55/10/3:0	DO		4102872 ()	LOAM MSND 0020 GRVL 0022 CLAY 0041 GRVL 0046 CLAY 0076 MSND 0081 GREY LMSN 0083 FSND 0088 CLAY MSND 0102 GREY LMSN 0104
NORTH DORCHESTER TOW TR N 03 008	17 493774 4760103 W	1961/01 1708	5 5	FR 0062	35/44/5/8:0	ST DO		4102870 ()	LOAM 0004 BRWN CLAY 0030 CLAY GRVL 0050 CLAY MSND 0062 GRVL 0064

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
NORTH DORCHESTER TOW TR N 03 008	17 493534 4760053 W	1972/06 3009	5	FR 0084	26/33/10/2:0	DO		4105974 ()	CLAY SAND 0008 BRWN CLAY 0022 GREY SAND CLAY 0031 GREY CLAY SAND 0045 GREY SAND CLAY 0083 GREY SAND 0084
NORTH DORCHESTER TOW TR N 03 008	17 493602 4760482 W	2018/09 5466	6.25	FR 0038	20//20/1:	DO		7328053 (Z282227) A255658	BRWN SAND 0001 BRWN SAND GRVL 0014 GREY SAND GRVL 0028 GREY GRVL SAND CLAY 0030 GREY CLAY GRVL SAND 0038
NORTH DORCHESTER TOW TR N 03 008	17 493559 4760223 W	1988/03 5466	5	SU 0102	48/76/6/24:0	DO		4111398 (14340)	BRWN SAND PCKD 0017 GREY SAND CLAY 0023 GREY GRVL CLAY 0030 GREY BLDR HARD 0032 GREY GRVL CLAY 0075 GREY GRVL SAND 0080 GREY GRVL SAND CLAY 0098 GREY GRVL SAND 0100 GREY LMSN HARD 0102
NORTH DORCHESTER TOW TR N 03 009	17 494234 4760323 W	1985/12 5466	6 6	FR 0068	18/46/4/12:0	DO		4110509 (NA)	BLCK LOAM PORS 0001 BRWN SAND STNS CLAY 0015 GREY CLAY STNS DNSE 0022 GREY CLAY GRVL 0038 GREY CLAY STNS DNSE 0052 GREY GRVL CLAY 0066 GREY LMSN HARD 0069
NORTH DORCHESTER TOW TR N 03 009	17 494374 4760463 W	1979/06 2607	36	FR 0008	8/14/3/:	DO		4108834 ()	SAND 0014
NORTH DORCHESTER TOW TR N 03 009	17 494354 4760503 W	1980/03 5466	5	FR 0050	10/38/5/2:0	DO	0049 3	4109439 ()	BRWN SAND PCKD 0007 BRWN GRVL CLAY 0015 BRWN CLAY SAND 0025 BRWN GRVL CLAY 0048 BRWN GRVL PORS 0052
NORTH DORCHESTER TOW TR N 03 009	17 494314 4760363 W	1980/03 5466	5 5	FR 0077	12/34/5/16:0	DO		4109440 ()	BRWN SAND PCKD 0007 BRWN GRVL SAND 0018 BRWN CLAY SAND 0027 BRWN GRVL CLAY 0069 BRWN GRVL PORS 0075 BRWN LMSN HARD 0077
NORTH DORCHESTER TOW TR N 03 009	17 494394 4760403 W	1983/08 5466	5 5	FR 0068	6/30/13/14:0	DO		4110011 ()	BRWN SAND PCKD 0010 BRWN SAND 0020 GREY CLAY DNSE 0025 GREY GRVL CLAY 0060 GREY GRVL PORS 0067 BRWN LMSN HARD 0068
NORTH DORCHESTER TOW TR N 03 009	17 494064 4761023 W	1955/07 2801	8					4103070 ()	FSND 0013 MSND CLAY GRVL 0020 BLUE CLAY MSND GRVL 0045 BLUE CLAY 0064 BLUE CLAY FSND 0070 FSND GRVL 0077 MSND GRVL 0082 BLUE CLAY GRVL 0100 ROCK 0102
NORTH DORCHESTER TOW TR N 03 009	17 494434 4760403 W	1976/04 5466	5 5	MN 0063	-4/16/15/24:0	DO		4107600 ()	RED SAND LOOS 0006 BLUE CLAY DNSE 0020 GREY GRVL CLAY LYRD 0050 GREY GRVL PORS 0061 BRWN LMSN HARD PORS 0063
NORTH DORCHESTER TOW TR N 03 009	17 494084 4760273 W	1962/09 1708	5 5	SU 0092	60/65/8/8:0	ST DO		4102873 ()	LOAM 0006 MSND 0022 GREY CLAY 0057 HPAN 0078 CLAY 0088 LMSN 0092
NORTH DORCHESTER TOW TR N 03 009	17 494284 4760353 W	1988/03 5466	5 5	FR 0078	28/63/6/1:0	DO		4111255 (03895)	BRWN SAND CLAY PCKD 0004 BRWN SAND PCKD 0020 GREY SAND CLAY PCKD 0035 GREY GRVL CLAY 0074 BRWN LMSN HARD 0078
NORTH DORCHESTER TOW TR N 03 010	17 494214 4760363 W	1983/04 5466	5	FR 0075	15/46/5/4:0	DO		4109922 ()	BRWN SAND PCKD 0005 BRWN CLAY GRVL 0010 GREY CLAY SAND 0029 GREY GRVL CLAY 0071 BRWN LMSN HARD 0075
NORTH DORCHESTER TOW TR N 03 010	17 495014 4760618 W	1971/03 1708	4	FR 0064	34/61/9/8:0	DO	0065 4	4105393 ()	LOAM 0001 BRWN CLAY MSND 0021 BRWN CLAY MSND 0043 GREY FSND 0060 GREY MSND CLAY 0064 GREY FSND 0069 GREY CLAY GRVL 0070
NORTH DORCHESTER TOW TR N 03 010	17 494614 4760663 W	1976/06 5466	5 5	MN 0076	7/38/10/16:0	ST		4107654 ()	RED SAND LOOS 0004 GREY GRVL PORS 0025 GREY CLAY DNSE 0030 GREY GRVL CLAY LYRD 0065 GREY GRVL PORS 0073 BRWN LMSN HARD PORS 0076

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION	
NORTH DORCHESTER TOW TR N 03 011	17 495154 4760703 W	1967/08 3009	5 5	FR 0135	40/132/6/6:0	DO		4102876 ()	CLAY MSND 0020 FSND 0062 CLAY MSND 0092 FSND 0107 LMSN 0110 MSND GRVL 0132 GREY LMSN 0135	
NORTH DORCHESTER TOW TR N 03 011	17 495360 4760757 W	2019/07 7090	6 6	UT 0071	39/41/10/2:	DO	0058 12	7338997 (Z299311) A258362	BRWN CLAY SNDY 0013 BRWN FSND LOOS 0071 GREY CLAY SOFT 0075	
NORTH DORCHESTER TOW TR N 03 011	17 495219 4760709 W	2015/06 7090	6 6	UT 0061	30/33/10/1:30	DO	0048 12	7254857 (Z201669) A170120	BRWN CLAY STNS 0014 BRWN SAND 0060 GREY HPAN 0065	
NORTH DORCHESTER TOW TR N 03 011	17 495283 4760742 W	2018/07 7090	6 6	UT 0042	35/40/10/1:30	DO	0052 12	7314845 (Z288559) A249256	BLCK LOAM LOAM 0002 BRWN CLAY STNS SAND 0016 BRWN SAND FSND 0042 GREY SAND MSND 0064 GREY CLAY SOFT 0069	
NORTH DORCHESTER TOW TR N 03 011	17 495134 4760743 W	1967/02 1708	5 5	FR 0064	33/62/7/8:0	ST DO	0060 3	4102875 ()	BRWN CLAY 0008 BRWN CLAY MSND 0028 BRWN FSND 0064 BRWN CSND 0067 GREY CLAY 0068	
NORTH DORCHESTER TOW TR N 04 008	17 493974 4759213 W	1962/08 2801	5					4102900 ()	CLAY MSND 0003 MSND GRVL BLDR 0008 CLAY BLDR 0026 MSND GRVL 0028 WHIT CLAY BLDR 0031 ROCK 0036	
NORTH DORCHESTER TOW TR N 04 008	17 494074 4759283 W	1962/08 2801	5					4102898 ()	FILL CLAY 0006 MSND GRVL 0011 CLAY BLDR 0026	
NORTH DORCHESTER TOW TR N 04 008	17 493514 4759961 W	1961/05 3410	5 5	FR 0082	17/24/6/3:0	DO		4102896 ()	LOAM 0002 YLLW MSND 0005 BLUE CLAY 0020 HPAN 0079 GREY LMSN 0084	
NORTH DORCHESTER TOW TR N 04 008	17 493639 4760008 W	1962/01 1708	5 5	FR 0071	28/33/8/8:0	DO		4102897 ()	BRWN CLAY 0015 BLUE CLAY 0017 CLAY GRVL 0069 GRVL SHLE 0071	
NORTH DORCHESTER TOW TR N 04 008	17 493674 4759963 W	1975/05 1708	5	FR 0066	24/42/13/8:0	DO		4107535 ()	LOAM 0001 BRWN CLAY STNS 0016 GREY CLAY GRVL 0042 GREY GRVL CMTD 0059 GREY CLAY SAND GRVL 0066 LMSN GRVL 0067	
NORTH DORCHESTER TOW TR N 04 008	17 493504 4759953 W	1969/04 2607	36	FR 0010	10/21/1/1:0	DO		4104657 ()	BRWN CLAY MSND 0008 BLUE CLAY MSND 0022	
NORTH DORCHESTER TOW TR N 04 008	17 493514 4759943 W	1969/08 2607	36	FR 0023	23/39/0/1:0	DO		4104792 ()	BRWN CLAY MSND 0012 BLUE CLAY BLDR 0040	
NORTH DORCHESTER TOW TR N 04 008	17 493750 4759660 W	2003/11 6032	1.97			NU	0007 3	4115472 (Z05561) A005180	BRWN SILT 0012 GREY GRVL TILL SILT 0015	
NORTH DORCHESTER TOW TR N 04 008	17 493803 4759643 L	1997/09 3563	5 5 5	FR 0123	32/90/12/2:0	DO		4113726 (177836)	BRWN CLAY STNS 0018 BLUE CLAY 0053 SAND GRVL DRY 0061 GREY HPAN STNS 0098 GREY LMSN 0123	
NORTH DORCHESTER TOW TR N 04 008	17 493774 4760053 W	1987/06 5466	5 4	FR 0073	20/37/13/18:0	DO	0070 3	4110951 (03819)	BRWN CLAY STNS DNSE 0005 BRWN GRVL CLAY PCKD 0012 GREY CLAY GRVL PCKD 0020 GREY GRVL SAND CLAY 0060 GREY GRVL SAND 0070 GREY CSND LOOS 0073	
NORTH DORCHESTER TOW TR N 04 008	17 493534 4759963 W	1985/12 5466	5	FR 0061	15/31/12/2:0	DO	0058 3	4110402 ()	BRWN CLAY STNS 0010 BRWN GRVL CLAY 0016 GREY GRVL CLAY 0054 GREY GRVL SAND CLAY 0058 GREY SAND GRVL LOOS 0061	
NORTH DORCHESTER TOW TR N 04 008	17 493684 4759633 W	1968/07 2607	36	FR 0006	6/14/0/1:0	PS		4104491 ()	CLAY 0015	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
NORTH DORCHESTER TOW TR N 04 009	17 494378 4759884 L	2000/03 6824	5	FR 0030	30/34/5/2:0	DO	0032 3	4114469 (212155)	BRWN FSND 0028 BLCK FSND 0040 GREY GRVL TILL 0055
NORTH DORCHESTER TOW TR N 04 009	17 494484 4759603 W	1952/07 3410	6	SU 0063	12/40/15/:	DO		4102899 ()	GRVL 0010 CLAY 0020 MSND 0027 HPAN 0062 GRVL 0063
NORTH DORCHESTER TOW TR N 04 010	17 494914 4759783 W	1953/09 4711	4 4	FR 0059	15/20/4/5:0	DO		4102902 ()	LOAM 0003 YLLW CLAY 0006 GRVL HPAN 0020 STNS HPAN 0045 SHLE 0059
NORTH DORCHESTER TOW TR N 04 010	17 494687 4760428 W	1974/03 2801				MN		4106734 ()	LOAM 0001 BRWN CLAY GRVL 0006 GREY CLAY 0019 GREY CLAY SILT 0030 GREY CLAY SAND SILT 0064 GREY LMSN 0065 GREY LMSN 0067
NORTH DORCHESTER TOW TR N 04 010	17 495094 4760403 W	1984/10 2552	36	FR 0025	25/47/5/2:0	DO		4110200 ()	BRWN CLAY 0020 BRWN SAND 0048
NORTH DORCHESTER TOW TR N 04 010	17 494954 4759743 W	1947/06 3558	4 4	SU	16/19/6/4:0	DO		4102901 ()	BRWN CLAY STNS 0020 HPAN BLDR 0052 GREY ROCK 0057
NORTH DORCHESTER TOW TR N 04 011	17 495234 4760343 W	1966/11 2519	30	FR 0012	12/20/3/1:0	DO		4102903 ()	LOAM 0001 BRWN CLAY 0011 BRWN MSND 0020
NORTH DORCHESTER TOW TR S A 017	17 495394 4759563 W	1948/10 3505	4	SU 0088	30/35/6/7:0	DO		4102944 ()	LOAM 0004 BLDR CLAY 0020 GRVL STNS 0050 BLDR CLAY ROCK 0088
NORTH DORCHESTER TOW TR S A 017	17 495354 4759283 W	1953/03 2801	6					4102945 ()	LOAM 0001 MSND GRVL 0015 BLDR MSND GRVL 0022 BLUE CLAY MSND GRVL 0027 GRVL MSND 0028 BLUE CLAY MSND GRVL 0039 GRVL MSND CLAY 0046 BLUE CLAY MSND GRVL 0065 BLUE CLAY GRVL MSND 0069 GRVL ROCK 0077 CLAY 0079
NORTH DORCHESTER TOW TR S A 018	17 494744 4759328 W	1949/08 3511	4 4		60/70/5/12:0	DO		4102949 ()	BRWN CLAY 0020 HPAN STNS 0070 MSND 0080 LMSN 0084
NORTH DORCHESTER TOW TR S A 018	17 494159 4759188 W	1953/03 2801	4 4 4	FR	39/40/19/7:0	NU	0055 7	4102950 ()	LOAM 0001 MSND GRVL CLAY 0045 MSND GRVL 0057 BLDR MSND GRVL 0062 MSND GRVL BLDR 0072 ROCK 0074
NORTH DORCHESTER TOW TR S A 018	17 494744 4759333 W	1955/11 4711	6	FR 0079	30/60/2/5:0	ST DO		4102951 ()	LOAM 0001 MSND GRVL 0035 CLAY GRVL 0079 GRVL 0080
NORTH DORCHESTER TOW TR S A 019	17 494374 4759343 W	1985/10 4741	10	SU 0064	///24:0			4110332 ()	GRVL 0003 BRWN CLAY 0017 BLUE CLAY STNS 0045 GREY LMSN 0078
NORTH DORCHESTER TOW TR S A 019	17 494454 4759263 W	1985/05 4741	7					4110336 ()	GRVL 0012 BRWN CLAY 0017 BLUE CLAY STNS 0040
NORTH DORCHESTER TOW TR S A 019	17 494074 4759143 W	1985/10 4741	5	FR 0010	2/10/10/1:0		0006 4	4110339 () A	BRWN CLAY SLTY 0006 BRWN GRVL 0010

TOWNSHIP CON LOT UTM DATE CNTR CASING DIA WATER PUMP TEST WELL USE SCREEN WELL FORMATION

SNDS SANDSTONE

SNDY SANDYOAPSTONE

Notes:

DRTY DIRTY

DRY DRY

UTM: DTM in Zone, Easting, Northing and Datum is NAD83; L: UTM estimated from Centroid of Lot; W: UTM not from Lot Centroid DATE CNTR: Date Work Completedand Well Contractor Licence Number

PEAT PEAT

PGVL PEA GRAVEL

CASING DIA: . @asing diameter in inches

WATER: Onit of Depth in Fee. See Table 4 for Meaning of Code

HARD HARD

HPAN HARDPAN

PUMP TEST: Static Water Level in Feet / Water Level After Pumping in Feet / Pump Test Rate in GPM / Pump Test Duration in Hour : Minutes

WELL USE: See Table 3 for Meaning of Code SCREEN: Screen Depth and Length in feet

WELL: WEL (AUDIT #) Well Tag . A: Abandonment; P: Partial Data Entry Only

FORMATION: See Table 1 and 2 for Meaning of Code

1. Core Material and Descriptive terms

Code	Description	Code	Description	Code	Description	Code	Description	Code	Description
BLDR	BOULDERS	FCRD	FRACTURED	IRFM	IRON FORMATION	PORS	POROUS	SOFT	SOFT
BSLT	BASALT	FGRD	FINE-GRAINED	LIMY	LIMY	PRDG	PREVIOUSLY DUG	SPST	SOAPSTONE
CGRD	COARSE-GRAINED	${\tt FGVL}$	FINE GRAVEL	LMSN	LIMESTONE	PRDR	PREV. DRILLED	STKY	STICKY
CGVL	COARSE GRAVEL	${\tt FILL}$	FILL	LOAM	TOPSOIL	QRTZ	QUARTZITE	STNS	STONES
CHRT	CHERT	FLDS	FELDSPAR	LOOS	LOOSE	QSND	QUICKSAND	STNY	STONEY
CLAY	CLAY	FLNT	FLINT	LTCL	LIGHT-COLOURED	QTZ	QUARTZ	THIK	THICK
CLN (CLEAN	FOSS	FOSILIFEROUS	LYRD	LAYERED	ROCK	ROCK	THIN	THIN
CLYY	CLAYEY	FSND	FINE SAND	MARL	MARL	SAND	SAND	${\tt TILL}$	TILL
CMTD	CEMENTED	GNIS	GNEISS	MGRD	MEDIUM-GRAINED	SHLE	SHALE	UNKN	UNKNOWN TYPE
CONG	CONGLOMERATE	GRNT	GRANITE	MGVL	MEDIUM GRAVEL	SHLY	SHALY	VERY	VERY
CRYS	CRYSTALLINE	GRSN	GREENSTONE	MRBL	MARBLE	SHRP	SHARP	WBRG	WATER-BEARING
CSND	COARSE SAND	GRVL	GRAVEL	MSND	MEDIUM SAND	SHST	SCHIST	WDFR	WOOD FRAGMENTS
DKCL	DARK-COLOURED	GRWK	GREYWACKE	MUCK	MUCK	SILT	SILT	WTHD	WEATHERED
DLMT	DOLOMITE	GVLY	GRAVELLY	OBDN	OVERBURDEN	SLTE	SLATE		
DNSE	DENSE	GYPS	GYPSUM	PCKD	PACKED	SLTY	SILTY		

2. Core Color

3. Well Use

ded Demonstration ded Demonstration ded Demonstration	
Code Description Code Description Code Description	
WHIT WHITE DO Domestic OT Other	
GREY GREY ST Livestock TH Test Hole	
BLUE BLUE IR Irrigation DE Dewatering	
GREN GREEN IN Industrial MO Monitoring	
YLLW YELLOW CO Commercial MT Monitoring TestH	ole
BRWN BROWN MN Municipal	
RED RED PS Public	
BLCK BLACK AC Cooling And A/C	
BLGY BLUE-GREY NU Not Used	

4. Water Detail

Code	Description	Code	Description
FR	Fresh	GS	Gas
SA	Salty	IR	Iron
SU	Sulphur		
MN	Mineral		
UK	Unknown		
SU MN	Sulphur Mineral	TK	11011

Appendix G – Water Levels and Hydrographs

LON-21008138-A0

Hunter Farm - Marion St, Dorchester

Groundwater Elevation Monitoring

Well ID	BH1/MW	BH2/MW	BH3/MW	BH4/MW	BH5/MW	BH6/MW	BH7/MW-A	BH7/MW-B	BH8/MW	BH9/MW
Ground Surface Elevation (m amsl)	260.80	256.00	256.04	256.03	257.64	268.06	264.30	264.28	257.53	266.14
Top of Pipe Elevation (m amsl)	261.60	256.90	256.89	256.85	258.57	268.90	265.08	265.11	258.43	266.96
Groundwater Elevation (m amsl)										
17-May-21	256.18	255.01	254.79	254.59	256.87	258.87	263.69	263.75	257.03	264.84
30-Jul-21	256.03	255.14	254.49	254.73	256.96	258.61	263.26	263.22	257.09	264.81
17-Aug-21	255.97	254.99	254.37	254.60	256.82	258.59	262.98	262.93	256.95	264.60
28-Sep-21	256.30	255.26	255.03	254.85	257.01	258.38	263.65	263.57	257.12	264.92
13-Oct-21	256.41	255.35	254.99	254.77	257.27	258.53	263.90	263.86	257.19	264.97
10-Nov-21	256.43	255.23	254.61	254.75	257.03	258.90	263.85	263.90	257.19	264.99
20-Dec-21	256.46	255.24	254.02	254.78	257.07	259.37	264.08	264.20	257.19	264.40
18-Jan-22	256.45	255.20	253.97	254.80	257.13	259.33	264.10	264.06	257.20	264.45
24-Feb-22	256.59	255.46	255.27	255.09	257.23	259.24	264.15	264.32	257.25	265.30
17-Mar-22	256.47	255.26	255.10	254.82	257.19	259.22	264.20	264.20	257.15	265.14
26-Apr-22	256.46	255.24	254.04	254.78	257.07	259.18	264.06	264.21	257.13	265.13

Groundwater Level Monitoring

Well ID	BH1/MW	BH2/MW	BH3/MW	BH4/MW	BH5/MW	BH6/MW	BH7/MW-A	BH7/MW-B	BH8/MW	BH9/MW
Groundwater Level (m bgs)										
17-May-21	4.62	1.00	1.25	1.44	0.77	9.18	0.61	0.53	0.50	1.30
30-Jul-21	4.77	0.87	1.55	1.30	0.68	9.44	1.04	1.06	0.44	1.33
17-Aug-21	4.83	1.02	1.67	1.43	0.82	9.46	1.32	1.35	0.58	1.54
28-Sep-21	4.50	0.75	1.01	1.18	0.63	9.67	0.65	0.71	0.41	1.22
13-Oct-21	4.39	0.66	1.05	1.26	0.37	9.53	0.40	0.42	0.34	1.17
10-Nov-21	4.37	0.78	1.43	1.28	0.61	9.15	0.45	0.38	0.34	1.15
20-Dec-21	4.34	0.77	2.02	1.25	0.57	8.68	0.22	0.08	0.34	1.74
18-Jan-22	4.35	0.81	2.07	1.23	0.51	8.72	0.20	0.22	0.33	1.69
24-Feb-22	4.21	0.55	0.77	0.94	0.41	8.81	0.15	-0.04	0.28	0.84
17-Mar-22	4.33	0.75	0.94	1.21	0.45	8.83	0.10	0.08	0.38	1.00
26-Apr-22	4.34	0.77	2.00	1.25	0.57	8.87	0.24	0.07	0.40	1.01

Notes

- indicates not measured

LON-21008138-A0 Hunter Farm - Marion St, Dorchester

Water Elevation Monitoring

Well ID	P1 Inside	P1 Outside	SG1	P2 Inside	P2 Outside	SG2	P3 Inside	P3 Outside	SG3	P4 Inside	P4 Outside	SG4	P5 Inside	P5 Outside	SG5
Ground Surface Elevation (masl)	255.52	255.52	255.49	254.58	254.58	254.49	256.21	256.21	256.01	263.57	263.57	263.57	264.43	264.43	264.17
Top of Pipe Elevation (masl)	256.56	256.56	-	255.88	255.88	-	257.55	257.55	-	264.74	264.74	-	265.68	265.68	-
Groundwater Elevation															
30-Jul-21	255.16	255.63	255.60	254.65	254.67	254.72	256.27	-	Dry	262.96	Dry	Dry	264.56	264.68	264.56
17-Aug-21	255.22	255.66	255.60	254.68	254.70	254.71	256.25	-	256.27	262.78	-	-	264.54	264.65	264.56
28-Sep-21	255.46	255.58	255.59	254.89	254.75	254.79	256.52	256.25	256.35	262.76	Dry	Dry	264.69	264.66	264.57
13-Oct-21	255.66	255.46	255.63	254.89	254.75	254.85	256.51	256.36	256.41	263.29	Dry	263.71	264.70	264.69	264.63
10-Nov-21	255.44	255.64	255.63	254.71	254.69	254.78	256.63	Dry	256.40	263.68	263.75	264.10	264.62	264.69	264.62
20-Dec-21	255.56	255.65	255.64	254.77	254.66	254.77	256.54	256.31	256.38	NM	NM	264.27	264.71	264.54	264.64
18-Jan-22	255.54	255.61	255.62	254.75	254.64	254.78	256.50	Dry	256.37	263.70	263.75	263.95	264.69	264.70	264.61
24-Feb-22	255.60	255.81	255.75	255.28	254.83	254.94	256.60	256.38	256.48	NM	264.08	264.50	264.95	264.90	264.92
17-Mar-22	255.57	255.71	255.69	254.67	254.73	254.78	256.71	256.32	256.42	263.91	263.95	264.43	264.64	263.78	264.87
26-Apr-22	255.66	255.74	255.64	254.75	254.71	254.74	256.63	256.34	256.36	NM	NM	264.38	264.72	264.79	265.06

Water Level Monitoring

Well ID	P1 Inside	P2 Inside	P3 Inside	P4 Inside	P5 Inside
Groundwater Level (m bgs)					
30-Jul-21	0.36	-0.07	-0.06	0.60	-0.13
17-Aug-21	0.30	-0.10	-0.04	0.78	-0.11
28-Sep-21	0.06	-0.31	-0.31	0.80	-0.26
13-Oct-21	-0.14	-0.31	-0.30	0.27	-0.27
10-Nov-21	0.08	-0.13	-0.42	-0.12	-0.19
20-Dec-21	-0.04	-0.19	-0.33	NM	-0.28
18-Jan-22	-0.02	-0.17	-0.29	-0.14	-0.26
24-Feb-22	-0.08	-0.70	-0.39	NM	-0.52
17-Mar-22	-0.05	-0.09	-0.50	-0.35	-0.21
26-Apr-22	-0.14	-0.17	-0.42	NM	-0.30

Notes:

- indicates not measured

Appendix H – Single Well Response Test Data

Data Set: E:\LON\LON-21008138-A0\50 Input\Hydrogeological Work\SWRT Data\BH2MW.aqt

Date: 11/16/21 Time: 08:10:57

PROJECT INFORMATION

Company: EXP

Client: Auburn Developments Inc.

Project: LON-21008138 Location: Dorchester, Ontario Test Date: May 17 2021

AQUIFER DATA

Saturated Thickness: 5. m Anisotropy Ratio (Kz/Kr): 0.3

WELL DATA (BH2/MW)

Initial Displacement: 3.135 m

Total Well Penetration Depth: 3.53 m

Casing Radius: 0.0254 m

Static Water Column Height: 3.53 m

Screen Length: 1.524 m Well Radius: 0.1048 m

SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 7.3E-8 m/sec

y0 = 3.03 m

Data Set: E:\LON\LON-21008138-A0\50 Input\Hydrogeological Work\SWRT Data\BH4MW.aqt

Date: 11/16/21 Time: 08:10:36

PROJECT INFORMATION

Company: EXP

Client: Auburn Developments Inc.

Project: LON-21008138 Location: Dorchester, Ontario Test Date: May 17 2021

AQUIFER DATA

Saturated Thickness: 2.74 m Anisotropy Ratio (Kz/Kr): 0.4

WELL DATA (BH4/MW)

Initial Displacement: 0.3536 m
Total Well Penetration Depth: 3.1 m

Casing Radius: 0.0254 m

Static Water Column Height: 3.1 m

Screen Length: 1.524 m Well Radius: 0.1048 m

SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 0.0008171 m/sec

y0 = 0.3336 m

Data Set: E:\LON\LON-21008138-A0\50 Input\Hydrogeological Work\SWRT Data\BH7MW A.aqt

Date: 11/16/21 Time: 08:09:45

PROJECT INFORMATION

Company: EXP

Client: Auburn Developments Inc.

Project: LON-21008138 Location: Dorchester, Ontario Test Date: May 17 2021

AQUIFER DATA

Saturated Thickness: 6.71 m Anisotropy Ratio (Kz/Kr): 0.3

WELL DATA (BH7/MW-A)

Initial Displacement: 1.861 m

Static Water Column Height: 5.15 m

Total Well Penetration Depth: 5.15 m

Screen Length: 1.524 m Well Radius: 0.1048 m

Casing Radius: 0.0254 m

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 9.0E-7 m/sec y0 = 1.765 m

Data Set: E:\LON\LON-21008138-A0\50 Input\Hydrogeological Work\SWRT Data\BH8MW.aqt

Date: 11/16/21 Time: 08:10:10

PROJECT INFORMATION

Company: EXP

Client: Auburn Developments Inc.

Project: LON-21008138 Location: Dorchester, Ontario Test Date: May 17 2021

AQUIFER DATA

Saturated Thickness: 3.6 m Anisotropy Ratio (Kz/Kr): 0.35

WELL DATA (BH8/MW)

Initial Displacement: 2.07 m

Total Well Penetration Depth: 3.21 m

Casing Radius: 0.0254 m

Static Water Column Height: 3.21 m

Screen Length: 1.524 m Well Radius: 0.1048 m

SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 3.2E-8 m/sec y0 = 2.029 m

Appendix I – Water Quality Tables

Groundwater Quality Results Hunter Farm Development, Dorchester, ON Project No. LON-21008138

			28-Sep-21	17-Mar-22	28-Sep-21	17-Mar-22	28-Sep-21	17-Mar-22	28-Sep-21	17-Mar-22
CRITERIA	ODWQS	UNITS		/MW		MW-A		MW-B		/MW
Calculated Parameters										
Anion Sum	-	me/L	7.37	6.08	4.23	11.2	9.63	9.1	3.38	3.78
Bicarb. Alkalinity (calc. as CaCO3)	-	mg/L	280	220	140	450	400	380	130	180
Calculated TDS	-	mg/L	390	330	230	610	510	460	180	190
Carb. Alkalinity (calc. as CaCO3)	-	mg/L	2.6	2.8	1.1	2.9	3.4	1.6	1.4	2.1
Cation Sum	-	me/L	7.83	6.23	4.29	11.6	10.3	8.95	3.4	3.89
Hardness (CaCO3)	-	mg/L	330	290	180	350	490	420	140	190
Ion Balance (% Difference)	-	%	3.05	1.25	0.63	1.61	3.31	0.86	0.31	1.46
Langelier Index (@ 20C)	-	N/A	0.974	0.987	0.386	1	1.25	0.859	0.408	0.728
Langelier Index (@ 4C)	-	N/A	0.726	0.739	0.137	0.755	1	0.611	0.158	0.478
Saturation pH (@ 20C)	-	N/A	7.02	7.14	7.52	6.83	6.7	6.78	7.63	7.36
Saturation pH (@ 4C)	-	N/A	7.27	7.39	7.77	7.08	6.95	7.03	7.88	7.61
Inorganics										
Total Ammonia-N	-	mg/L	<0.050	<0.050	<0.050	0.29	0.097	0.12	<0.050	<0.050
Conductivity	-	umho/cm	690	570	410	1000	840	840	320	350
Dissolved Organic Carbon	-	mg/L	3.7	5.2	4.8	9.5	10	7	4.1	1.2
Orthophosphate (P)	-	mg/L	<0.010	<0.010	<0.010	0.011	<0.010	<0.010	<0.010	<0.010
рН	-	рН	8	8.13	7.91	7.83	7.95	7.64	8.04	8.09
Dissolved Sulphate (SO4)	-	mg/L	27	24	37	69	39	22	18	2.2
Alkalinity (Total as CaCO3)	-	mg/L	290	230	140	460	410	390	130	190
Dissolved Chloride (Cl-)	-	mg/L	38	24	18	24	24	33	9	<1.0
Nitrite (N)	1	mg/L	<0.010	<0.010	0.026	<0.010	0.055	<0.010	0.015	<0.010
Nitrate (N)	10	mg/L	0.11	5.23	1.08	<0.10	0.26	<0.10	0.54	<0.10
Nitrate + Nitrite (N)	-	mg/L	0.11	5.23	1.11	<0.10	0.31	<0.10	0.56	<0.10
Metals	_									
Dissolved Aluminum (Al)	-	ug/L	<4.9	8	7.3	6.7	5.9	<4.9	9.4	6.1
Dissolved Antimony (Sb)	6	ug/L	<0.50	<0.50	0.71	0.62	<0.50	<0.50	0.51	<0.50
Dissolved Arsenic (As)	10	ug/L	5.4	<1.0	1	1.9	<1.0	<1.0	<1.0	<1.0
Dissolved Barium (Ba)	1000	ug/L	79	29	32	36	72	44	17	14
Dissolved Beryllium (Be)	-	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Dissolved Boron (B)	5000	ug/L	28	11	17	41	16	<10	16	11
Dissolved Cadmium (Cd)	5	ug/L	<0.090	<0.090	<0.090	<0.090	<0.090	<0.090	<0.090	<0.090
Dissolved Calcium (Ca)	-	ug/L	92000	86000	53000	100000	140000	120000	42000	57000
Dissolved Chromium (Cr)	50	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Dissolved Cobalt (Co)	-	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.55	<0.50	<0.50
Dissolved Copper (Cu)	-	ug/L	17	1.1	23	3.4	21	2.4	11	1.4
Dissolved Iron (Fe)	-	ug/L	<100	<100	<100	<100	<100	<100	<100	<100
Dissolved Lead (Pb)	10	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dissolved Magnesium (Mg)	-	ug/L	24000	18000	12000	24000	32000	28000	8800	12000
Dissolved Manganese (Mn)	-	ug/L	88	18	10	300	310	430	<2.0	<2.0
Dissolved Molybdenum (Mo)	-	ug/L	12	0.69	5.3	45	4.2	2	4.9	<0.50
Dissolved Nickel (Ni)	-	ug/L	13	<1.0	8.7	1	8.6	1.6	4.7	<1.0
Dissolved Phosphorus (P)	-	ug/L	<100	<100	<100	<100	<100	<100	<100	<100
Dissolved Potassium (K)	-	ug/L	2800	2500	3500	1600	3600	2300	3100	1700
Dissolved Selenium (Se)	50	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Dissolved Silicon (Si)	-	ug/L	4700	2800	2000	6900	6900	3400	2500	2900
Dissolved Silver (Ag) Dissolved Sodium (Na)	-	ug/L	<0.090	<0.090 10000	<0.090	<0.090 100000	<0.090	<0.090 10000	<0.090	<0.090
Dissolved Strontium (Sr)	<u> </u>	ug/L	27000		14000		7300		12000	1300
Dissolved Thallium (TI)	-	ug/L	180 <0.050	160	180 <0.050	140 <0.050	200	160 <0.050	120	81 <0.050
Dissolved Titanium (Ti)	_	ug/L		<0.050		<0.050	<0.050		<0.050	
Dissolved Tranium (TI)	20	ug/L	<5.0 0.59	<5.0	<5.0	<5.0	<5.0 0.74	<5.0	<5.0	<5.0 0.21
, ,		ug/L		1.5	1.2	35	0.74	1.8	0.59	0.21
Dissolved Vanadium (V)	-	ug/L	<0.50 59	<0.50 <5.0	<0.50	1.6 38	0.58	<0.50 36	<0.50 30	<0.50 7
Dissolved Zinc (Zn)		ug/L	צכ	₹ 5.0	110	30	44	30	30	/

TABLE NOTES:

 $\label{thm:compared} \textbf{Results compared to Ontario Drinking Water Quality Standards (ODWQS)}.$

Values highlighted GREY and bold exceed parameter guidelines

Surface Water Quality Results Hunter Farm Development, Dorchester, ON Project No. LON-21008138

CRITERIA	PWQO	UNITS	28-Sep-21 SW Stat	17-Mar-22 tion1	28-Sep-21 SW Star	17-Mar-22 tion 2	28-Sep-21 SW Stat	17-Mar-22 ion 4	28-Sep-21 SW Stat	17-Mar-22 ion 5
Calculated Parameters										
Bicarb. Alkalinity (calc. as CaCO3)	-	mg/L	390	570	250	220	70	38	120	220
Calculated TDS	-	mg/L	650	920	380	330	170	45	140	240
Carb. Alkalinity (calc. as CaCO3) Hardness (CaCO3)	-	mg/L mg/L	3.5 400	2.8 640	3.6 310	2.3	<1.0 130	<1.0 44	<1.0 130	<1.0 220
Langelier Index (@ 20C)	-	N/A	1.18	1.23	1.13	0.897	-0.628	-1.19	0.15	0.165
Langelier Index (@ 4C)	-	N/A	0.93	0.981	0.882	0.648	-0.878	-1.44	-0.101	-0.085
Saturation pH (@ 20C)	-	N/A	6.8	6.49	7.06	7.14	7.94	8.61	7.71	7.28
Saturation pH (@ 4C)	-	N/A	7.05	6.73	7.31	7.38	8.19	8.86	7.97	7.53
Inorganics		<u> </u>		1		1	T		T	
Total Ammonia-N	-	mg/L	0.082	0.29	<0.050	<0.050	0.14	<0.050	0.093	1.2
Conductivity Total Organic Carbon (TOC)	-	umho/cm	1200 41	1700 30	640 8.9	590 5.4	280 17	89 3.9	260 24	440 23
Total Organic Carbon (TOC) Orthophosphate (P)	-	mg/L mg/L	0.012	<0.010	0.026	<0.010	0.4	0.017	0.082	0.1
рН	6.5 - 8.5	pH	7.98	7.71	8.19	8.03	7.32	7.42	7.86	7.44
Total Phosphorus	-	mg/L	1.9	0.41	0.043	0.026	0.46	0.09	0.64	1.5
Dissolved Sulphate (SO4)	-	mg/L	<1.0	<1.0	36	23	47	<1.0	<1.0	<1.0
Turbidity	-	NTU	9.3	45	1.1	0.7	2.5	0.8	5	7.2
Alkalinity (Total as CaCO3)	-	mg/L	390	570	250	230	70	38	120	220
Dissolved Chloride (Cl-)	-	mg/L	150	200	30	25	14	2.9	9.7	12
Nitrite (N)	-	mg/L	<0.010	<0.010	0.031	<0.010	0.039	<0.010	<0.010	<0.010
Nitrate (N)	-	mg/L	<0.10	<0.10	5.26	5.8	0.45	<0.10	<0.10	<0.10
Metals Discaluad Calaium (Ca)	T .	/1	120	200	٥٢	0.7	l 20	12	l 27	C1
Dissolved Calcium (Ca)	-	mg/L	130 21	200 35	95 17	87 16	38 7.3	13 2.7	37 7.9	61 16
Dissolved Magnesium (Mg) Dissolved Potassium (K)	+ -	mg/L mg/L	5	35	4	2	7.3	2.7	7.9	16 5
Dissolved Sodium (Na)	-	mg/L	89	120	12	11	2.5	1.1	3.4	3.9
Total Aluminum (AI)	75	ug/L	1300	84	67	75	140	100	940	1100
Total Antimony (Sb)	20	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50
Total Arsenic (As)	5	ug/L	7.3	2.7	<1.0	<1.0	<1.0	<10	1	1.2
Total Barium (Ba)	<u> </u>	ug/L	160	150	41	30	8.5	<20	31	35
Total Beryllium (Be)	1100	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	<4.0	<0.40	<0.40
Total Boron (B)	200	ug/L	43	15	22	11	44	<100	23	12
Total Calmium (Cd)	0.5	ug/L	<0.090	<0.090	<0.090	<0.090	0.11	<0.90	<0.090	<0.090
Total Calcium (Ca) Total Chromium (Cr)	8.9	ug/L ug/L	160000 <5.0	240000 <5.0	110000 <5.0	91000 <5.0	41000 <5.0	8900 <50	42000 <5.0	67000 <5.0
Total Cobalt (Co)	0.9	ug/L ug/L	2.3	2.4	<0.50	<0.50	0.5	<5.0	<0.50	<5.0 1
Total Copper (Cu)	5	ug/L ug/L	4	4.9	2.5	1.6	2	<9.0	2.2	7.7
Total Iron (Fe)	300	ug/L	39000	39000	130	190	230	<1000	1400	6200
Total Lead (Pb)	5	ug/L	2	<0.50	<0.50	<0.50	<0.50	<5.0	1.6	2.4
Total Magnesium (Mg)	-	ug/L	24000	36000	19000	18000	7600	1600	9000	18000
Total Manganese (Mn)	-	ug/L	1400	2700	30	40	210	410	76	450
Total Molybdenum (Mo)	40	ug/L	0.82	<0.50	1.3	0.64	1.3	<5.0	1.2	0.94
Total Nickel (Ni)	25	ug/L	3.8	3	<1.0	<1.0	<1.0	<10	1.1	1.8
Total Potassium (K)	-	ug/L	5100	2400	4000	2500	7800	<2000	3700	5500
Total Selenium (Se)	100	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
Total Silicon (Si)	0.1	ug/L	9900	9400	4300	2800	1800	<500	3500	3800
Total Silver (Ag) Total Sodium (Na)	- 0.1	ug/L ug/L	<0.090 93000	<0.090 120000	<0.090 14000	<0.090 12000	<0.090 1900	< 0.90 1200	<0.090 3000	<0.090 4300
Total Strontium (Sr)	-	ug/L	280	390	190	150	44	<10	57	77
Total Thallium (TI)	0.3	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050
Total Titanium (Ti)	-	ug/L	48	7.3	5.6	5.1	7.3	<50	24	29
Total Tungsten (W)	30	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0
Total Uranium (U)	5	ug/L	1.4	0.33	2.4	1.6	0.1	<1.0	0.44	0.81
Total Vanadium (V)	6	ug/L	3.4	0.7	0.87	0.53	0.79	<5.0	2.3	2.8
Total Zinc (Zn)	20	ug/L	26	43	<5.0	<5.0	5.4	<50	18	80
Total Zirconium (Zr)	4	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0
Dissolved Metals Dissolved Aluminum (Al)	_	ug/l	<4.9	_	9.4	-	24	-	11	
Dissolved Antimony (Sb)	+ -	ug/L ug/L	<0.50	-	<0.50	-	<0.50	-	<0.50	-
Dissolved Artificity (3b)	-	ug/L ug/L	<1.0	-	<1.0	-	<1.0	-	<1.0	-
Dissolved Barium (Ba)	-	ug/L	57	-	41	-	8	-	20	-
Dissolved Beryllium (Be)	-	ug/L	<0.40	-	<0.40	-	<0.40	-	<0.40	-
Dissolved Bismuth (Bi)	-	ug/L	<1.0	-	<1.0	-	<1.0	-	<1.0	-
Dissolved Boron (B)	-	ug/L	34	-	21	-	44	-	22	-
Dissolved Calaium (Cd)	 -	ug/L	<0.090	-	<0.090	-	0.093	-	<0.090	-
Dissolved Calcium (Ca)	-	ug/L	140000	-	100000	-	39000	-	41000	-
Dissolved Chromium (Cr) Dissolved Cobalt (Co)	-	ug/L ug/L	<5.0 <0.50	-	<5.0 <0.50	-	<5.0 <0.50	-	<5.0 <0.50	-
Dissolved Copper (Cu)	-	ug/L ug/L	<0.50	-	<0.50 1.9	-	<0.50 1.7	-	<0.50	-
Dissolved Copper (Cu)	-	ug/L ug/L	<100	-	<100	-	110	-	150	-
Dissolved Lead (Pb)	-	ug/L	<0.50	-	<0.50	-	<0.50	-	<0.50	-
Dissolved Lithium (Li)	-	ug/L	<5.0	-	<5.0	-	<5.0	-	<5.0	-
Dissolved Magnesium (Mg)	-	ug/L	25000	-	19000	-	7600	-	9000	-
Dissolved Manganese (Mn)	-	ug/L	18	-	20	-	200	-	<2.0	-
Dissolved Molybdenum (Mo)	-	ug/L	0.63	-	1.4	-	1.6	-	1.2	-
Dissolved Nickel (Ni)	-	ug/L	2.4	-	<1.0	-	<1.0	-	<1.0	-
Dissolved Phosphorus (P)	-	ug/L ug/L	<100 5100	-	100	-	510	-	270	-
Dissolved Potassium (K) Dissolved Selenium (Se)	-	ug/L ug/L	<2.0	-	4000 <2.0	-	8200 <2.0	-	3500 <2.0	-
Dissolved Silicon (Si)	 	ug/L ug/L	7200	-	4300	-	1500	-	2500	-
Dissolved Silver (Ag)	-	ug/L ug/L	<0.090	-	<0.090	-	<0.090	-	<0.090	-
Dissolved Sodium (Na)	-	ug/L	98000	-	13000	-	1900	-	3000	-
Dissolved Strontium (Sr)	-	ug/L	260	-	190	-	45	-	54	-
Dissolved Tellurium (Te)	-	ug/L	<1.0	-	<1.0	-	<1.0	-	<1.0	-
Dissolved Thallium (TI)	<u> </u>	ug/L	<0.050	-	<0.050	-	<0.050	-	<0.050	-
Dissolved Tin (Sn)	-	ug/L	<1.0	-	<1.0	-	<1.0	-	<1.0	-
Dissolved Titanium (Ti)	-	ug/L	<5.0	-	<5.0	-	<5.0	-	<5.0	-
Dissolved Tungsten (W)	-	ug/L	<1.0	-	<1.0	-	<1.0	-	<1.0	-
Dissolved Uranium (U)	-	ug/L	1.4	-	2.3	-	0.1	-	0.29	-
Dissolved Vanadium (V) Dissolved Zinc (Zn)	-	ug/L ug/L	<0.50 <5.0	-	0.56 <5.0	-	<0.50 <5.0	-	0.91 <5.0	-
Dissolved Zirc (Zn) Dissolved Zirconium (Zr)	-	ug/L ug/L	<5.0 <1.0	-	<5.0 <1.0	-	<5.0 <1.0	-	<5.0 <1.0	-
	1	√6/ L	`1.0	1	`1.0	<u> </u>	`1.0	<u> </u>	`1.0	

TABLE NOTES:
Results compared to Provincial Water Quality Objectives (PWQO), Ministry of the Environment and Energy (1994, revised 1999)

Values highlighted GREY and bold exceed parameter guidelines

Value in **BOLD** indicates detection limit exceeds parameter guideline

Due to limited amount of sample available for analysis at SW4, a smaller than usual portion of the sample was analyzed and detection limits were adjusted accordingly

Appendix J – Laboratory Chain of Custody

Your Project #: KCH-21008183 Site Location: HUNTER FARMS Your C.O.C. #: 870268-01-01

Attention: Kelli Dobbin

exp Services Inc London Branch 15701 Robin's Hill Rd Unit 2 London, ON CANADA N5V 0A5

> Report Date: 2022/03/30 Report #: R7065870

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C272761 Received: 2022/03/17, 15:15

Sample Matrix: Water # Samples Received: 8

" Jumples Received. 5		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	8	N/A	2022/03/23	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	8	N/A	2022/03/24	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	8	N/A	2022/03/23	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	8	N/A	2022/03/23	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	4	N/A	2022/03/24	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	8	N/A	2022/03/24	CAM SOP	SM 2340 B
				00102/00408/00447	
Lab Filtered Metals Analysis by ICP	3	2022/03/23	2022/03/24	CAM SOP-00408	EPA 6010D m
Lab Filtered Metals Analysis by ICP	1	2022/03/25	2022/03/28	CAM SOP-00408	EPA 6010D m
Lab Filtered Metals by ICPMS	4	2022/03/23	2022/03/24	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	3	N/A	2022/03/25	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	1	N/A	2022/03/30	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	4	N/A	2022/03/24		
Anion and Cation Sum	4	N/A	2022/03/24		
Total Ammonia-N	8	N/A	2022/03/23	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	8	N/A	2022/03/23	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	8	2022/03/22	2022/03/23	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	8	N/A	2022/03/23	CAM SOP-00461	EPA 365.1 m
Sat. pH and Langelier Index (@ 20C)	8	N/A	2022/03/24		Auto Calc
Sat. pH and Langelier Index (@ 4C)	8	N/A	2022/03/24		Auto Calc
Sulphate by Automated Colourimetry	8	N/A	2022/03/24	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	8	N/A	2022/03/24		Auto Calc
Total Organic Carbon (TOC) (3)	4	N/A	2022/03/23	CAM SOP-00446	SM 23 5310B m
Total Phosphorus (Colourimetric)	4	2022/03/23	2022/03/24	CAM SOP-00407	SM 23 4500 P B H m
Turbidity	4	N/A	2022/03/22	CAM SOP-00417	SM 23 2130 B m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

Your Project #: KCH-21008183 Site Location: HUNTER FARMS Your C.O.C. #: 870268-01-01

Attention: Kelli Dobbin

exp Services Inc London Branch 15701 Robin's Hill Rd Unit 2 London, ON CANADA N5V 0A5

Report Date: 2022/03/30

Report #: R7065870 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C272761

Received: 2022/03/17, 15:15

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
- (2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.
- (3) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Christine Gripton, Senior Project Manager Email: Christine.Gripton@bureauveritas.com

Phone# (519)652-9444

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 26

Client Project #: KCH-21008183
Site Location: HUNTER FARMS

Sampler Initials: MB

RCAP - COMPREHENSIVE (LAB FILTERED)

Bureau Veritas ID					SDE609		SDE610		
Sampling Date					2022/03/17		2022/03/17		
COC Number					870268-01-01		870268-01-01		
	UNITS	MAC	A/O	Criteria	MW3	QC Batch	MW7A	RDL	QC Batch
Calculated Parameters	-			·	•	<u> </u>		-	
Anion Sum	me/L	-	-	-	6.08	7896590	11.2	N/A	7894695
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	-	-	220	7896580	450	1.0	7894693
Calculated TDS	mg/L	-	500	-	330	7896579	610	1.0	7894701
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	-	-	2.8	7896580	2.9	1.0	7894693
Cation Sum	me/L	-	-	-	6.23	7896590	11.6	N/A	7894695
Hardness (CaCO3)	mg/L	-	80:100	-	290	7896344	350	1.0	7894046
lon Balance (% Difference)	%	-	-	-	1.25	7896589	1.61	N/A	7894694
Langelier Index (@ 20C)	N/A	-	-	-	0.987	7896591	1.00		7894699
Langelier Index (@ 4C)	N/A	-	-	-	0.739	7896592	0.755		7894700
Saturation pH (@ 20C)	N/A	-	-	-	7.14	7896591	6.83		7894699
Saturation pH (@ 4C)	N/A	-	-	-	7.39	7896592	7.08		7894700
Inorganics									
Total Ammonia-N	mg/L	-	-	-	<0.050	7899195	0.29	0.050	7899195
Conductivity	umho/cm	-	-	-	570	7897446	1000	1.0	7897446
Dissolved Organic Carbon	mg/L	-	5	-	5.2	7900197	9.5	0.40	7897137
Orthophosphate (P)	mg/L	-	-	-	<0.010	7897503	0.011	0.010	7897503
рН	рН	-	6.5:8.5	6.5:8.5	8.13	7897448	7.83		7897448
Dissolved Sulphate (SO4)	mg/L	-	500	-	24	7897496	69	1.0	7897496
Alkalinity (Total as CaCO3)	mg/L	-	30:500	-	230	7897442	460	1.0	7897442
Dissolved Chloride (Cl-)	mg/L	-	250	-	24	7897487	24	1.0	7897487
Nitrite (N)	mg/L	1	-	-	<0.010	7897511	<0.010	0.010	7897511
Nitrate (N)	mg/L	10	-	-	5.23	7897511	<0.10	0.10	7897511
Nitrate + Nitrite (N)	mg/L	10	-	-	5.23	7897511	<0.10	0.10	7897511
Metals									
Dissolved Aluminum (Al)	ug/L	-	100	-	8.0	7900101	6.7	4.9	7900101
Dissolved Antimony (Sb)	ug/L	6	-	20	<0.50	7900101	0.62	0.50	7900101

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively

(Made under the Ontario Safe Drinking Water Act, 2002)

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

N/A = Not Applicable

Client Project #: KCH-21008183
Site Location: HUNTER FARMS

Sampler Initials: MB

RCAP - COMPREHENSIVE (LAB FILTERED)

Bureau Veritas ID					SDE609		SDE610		
Sampling Date					2022/03/17		2022/03/17		
COC Number					870268-01-01		870268-01-01		
	UNITS	MAC	A/O	Criteria	MW3	QC Batch	MW7A	RDL	QC Batch
Dissolved Arsenic (As)	ug/L	10	-	100	<1.0	7900101	1.9	1.0	7900101
Dissolved Barium (Ba)	ug/L	1000	-	-	29	7900101	36	2.0	7900101
Dissolved Beryllium (Be)	ug/L	-	-	11	<0.40	7900101	<0.40	0.40	7900101
Dissolved Boron (B)	ug/L	5000	-	200	11	7900101	41	10	7900101
Dissolved Cadmium (Cd)	ug/L	5	-	0.2	<0.090	7900101	<0.090	0.090	7900101
Dissolved Calcium (Ca)	ug/L	-	-	-	86000	7900101	100000	200	7900101
Dissolved Chromium (Cr)	ug/L	50	-	-	<5.0	7900101	<5.0	5.0	7900101
Dissolved Cobalt (Co)	ug/L	-	-	0.9	<0.50	7900101	<0.50	0.50	7900101
Dissolved Copper (Cu)	ug/L	-	1000	5	1.1	7900101	3.4	0.90	7900101
Dissolved Iron (Fe)	ug/L	-	300	300	<100	7900101	<100	100	7900101
Dissolved Lead (Pb)	ug/L	10	-	5	<0.50	7900101	<0.50	0.50	7900101
Dissolved Magnesium (Mg)	ug/L	-	-	-	18000	7900101	24000	50	7900101
Dissolved Manganese (Mn)	ug/L	-	50	-	18	7900101	300	2.0	7900101
Dissolved Molybdenum (Mo)	ug/L	-	-	40	0.69	7900101	45	0.50	7900101
Dissolved Nickel (Ni)	ug/L	-	-	25	<1.0	7900101	1.0	1.0	7900101
Dissolved Phosphorus (P)	ug/L	-	-	-	<100	7900101	<100	100	7900101
Dissolved Potassium (K)	ug/L	-	-	-	2500	7900101	1600	200	7900101
Dissolved Selenium (Se)	ug/L	50	-	100	<2.0	7900101	<2.0	2.0	7900101
Dissolved Silicon (Si)	ug/L	-	-	-	2800	7900101	6900	50	7900101
Dissolved Silver (Ag)	ug/L	-	-	0.1	<0.090	7900101	<0.090	0.090	7900101
Dissolved Sodium (Na)	ug/L	-	200000	-	10000	7900101	100000	100	7900101
Dissolved Strontium (Sr)	ug/L	-	-	-	160	7900101	140	1.0	7900101
Dissolved Thallium (TI)	ug/L	-	-	0.3	<0.050	7900101	<0.050	0.050	7900101
Dissolved Titanium (Ti)	ug/L	-	-	-	<5.0	7900101	<5.0	5.0	7900101
Dissolved Uranium (U)	ug/L	20	-	5	1.5	7900101	35	0.10	7900101
Dissolved Vanadium (V)	ug/L	-	ı	6	<0.50	7900101	1.6	0.50	7900101
Dissolved Zinc (Zn)	ug/L	-	5000	30	<5.0	7900101	38	5.0	7900101

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively

(Made under the Ontario Safe Drinking Water Act, 2002)

Criteria: Ontario Provincial Water Quality Objectives

Client Project #: KCH-21008183
Site Location: HUNTER FARMS

Sampler Initials: MB

RCAP - COMPREHENSIVE (LAB FILTERED)

Bureau Veritas ID					SDE611		SDE612		
Sampling Date					2022/03/17		2022/03/17		
COC Number					870268-01-01		870268-01-01		
	UNITS	MAC	A/O	Criteria	MW7B	QC Batch	MW9	RDL	QC Batch
Calculated Parameters	·			·	•	·		-	
Anion Sum	me/L	-	-	-	9.10	7894695	3.78	N/A	7894695
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1	-	-	380	7894693	180	1.0	7894693
Calculated TDS	mg/L	1	500	-	460	7894701	190	1.0	7894701
Carb. Alkalinity (calc. as CaCO3)	mg/L	1	-	-	1.6	7894693	2.1	1.0	7894693
Cation Sum	me/L	-	-	-	8.95	7894695	3.89	N/A	7894695
Hardness (CaCO3)	mg/L	-	80:100	-	420	7894046	190	1.0	7894046
Ion Balance (% Difference)	%	-	-	-	0.860	7894694	1.46	N/A	7894694
Langelier Index (@ 20C)	N/A	-	-	-	0.859	7894699	0.728		7894699
Langelier Index (@ 4C)	N/A	-	-	-	0.611	7894700	0.478		7894700
Saturation pH (@ 20C)	N/A	-	-	-	6.78	7894699	7.36		7894699
Saturation pH (@ 4C)	N/A	-	-	-	7.03	7894700	7.61		7894700
Inorganics									
Total Ammonia-N	mg/L	-	-	-	0.12	7899195	<0.050	0.050	7899195
Conductivity	umho/cm	1	-	-	840	7897464	350	1.0	7897446
Dissolved Organic Carbon	mg/L	-	5	-	7.0	7897137	1.2	0.40	7897137
Orthophosphate (P)	mg/L	ı	1	-	<0.010	7897503	<0.010	0.010	7897503
рН	рН	1	6.5:8.5	6.5:8.5	7.64	7897458	8.09		7897448
Dissolved Sulphate (SO4)	mg/L	ı	500	-	22	7897496	2.2	1.0	7897496
Alkalinity (Total as CaCO3)	mg/L	ı	30:500	-	390	7897455	190	1.0	7897442
Dissolved Chloride (Cl-)	mg/L	1	250	-	33	7897487	<1.0	1.0	7897487
Nitrite (N)	mg/L	1	1	-	<0.010	7897511	<0.010	0.010	7897511
Nitrate (N)	mg/L	10	1	-	<0.10	7897511	<0.10	0.10	7897511
Nitrate + Nitrite (N)	mg/L	10	1	-	<0.10	7897511	<0.10	0.10	7897511
Metals									
Dissolved Aluminum (AI)	ug/L	ı	100	-	<4.9	7900101	6.1	4.9	7900101
Dissolved Antimony (Sb)	ug/L	6	-	20	<0.50	7900101	<0.50	0.50	7900101

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively

(Made under the Ontario Safe Drinking Water Act, 2002)

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

N/A = Not Applicable

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

RCAP - COMPREHENSIVE (LAB FILTERED)

Bureau Veritas ID					SDE611		SDE612		
Sampling Date					2022/03/17		2022/03/17		
COC Number					870268-01-01		870268-01-01		
	UNITS	MAC	A/O	Criteria	MW7B	QC Batch	MW9	RDL	QC Batch
Dissolved Arsenic (As)	ug/L	10	-	100	<1.0	7900101	<1.0	1.0	7900101
Dissolved Barium (Ba)	ug/L	1000	-	-	44	7900101	14	2.0	7900101
Dissolved Beryllium (Be)	ug/L	-	-	11	<0.40	7900101	<0.40	0.40	7900101
Dissolved Boron (B)	ug/L	5000	-	200	<10	7900101	11	10	7900101
Dissolved Cadmium (Cd)	ug/L	5	1	0.2	<0.090	7900101	<0.090	0.090	7900101
Dissolved Calcium (Ca)	ug/L	-	-	-	120000	7900101	57000	200	7900101
Dissolved Chromium (Cr)	ug/L	50	-	-	<5.0	7900101	<5.0	5.0	7900101
Dissolved Cobalt (Co)	ug/L	-	1	0.9	0.55	7900101	<0.50	0.50	7900101
Dissolved Copper (Cu)	ug/L	-	1000	5	2.4	7900101	1.4	0.90	7900101
Dissolved Iron (Fe)	ug/L	-	300	300	<100	7900101	<100	100	7900101
Dissolved Lead (Pb)	ug/L	10	-	5	<0.50	7900101	<0.50	0.50	7900101
Dissolved Magnesium (Mg)	ug/L	-	-	-	28000	7900101	12000	50	7900101
Dissolved Manganese (Mn)	ug/L	-	50	-	430	7900101	<2.0	2.0	7900101
Dissolved Molybdenum (Mo)	ug/L	-	-	40	2.0	7900101	<0.50	0.50	7900101
Dissolved Nickel (Ni)	ug/L	-	-	25	1.6	7900101	<1.0	1.0	7900101
Dissolved Phosphorus (P)	ug/L	-	-	-	<100	7900101	<100	100	7900101
Dissolved Potassium (K)	ug/L	-	-	-	2300	7900101	1700	200	7900101
Dissolved Selenium (Se)	ug/L	50	-	100	<2.0	7900101	<2.0	2.0	7900101
Dissolved Silicon (Si)	ug/L	-	-	-	3400	7900101	2900	50	7900101
Dissolved Silver (Ag)	ug/L	-	-	0.1	<0.090	7900101	<0.090	0.090	7900101
Dissolved Sodium (Na)	ug/L	-	200000	-	10000	7900101	1300	100	7900101
Dissolved Strontium (Sr)	ug/L	-	-	-	160	7900101	81	1.0	7900101
Dissolved Thallium (TI)	ug/L	-	-	0.3	<0.050	7900101	<0.050	0.050	7900101
Dissolved Titanium (Ti)	ug/L	-	-	-	<5.0	7900101	<5.0	5.0	7900101
Dissolved Uranium (U)	ug/L	20	-	5	1.8	7900101	0.21	0.10	7900101
Dissolved Vanadium (V)	ug/L	-	-	6	<0.50	7900101	<0.50	0.50	7900101
Dissolved Zinc (Zn)	ug/L	-	5000	30	36	7900101	7.0	5.0	7900101

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively

(Made under the Ontario Safe Drinking Water Act, 2002)

Criteria: Ontario Provincial Water Quality Objectives

Client Project #: KCH-21008183
Site Location: HUNTER FARMS

Sampler Initials: MB

RCAP - SURFACE WATER (WATER)

Bureau Veritas ID					SDE613		SDE614		
Sampling Date					2022/03/17		2022/03/17		
COC Number					870268-01-01		870268-01-01		
	UNITS	MAC	A/O	Criteria	SW1	RDL	SW2	RDL	QC Batch
Calculated Parameters									
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	-	-	570	1.0	220	1.0	7894693
Calculated TDS	mg/L	-	500	-	920	1.0	330	1.0	7894701
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	-	-	2.8	1.0	2.3	1.0	7894693
Hardness (CaCO3)	mg/L	-	80:100	-	640	1.0	280	1.0	7894046
Langelier Index (@ 20C)	N/A	-	-	-	1.23		0.897		7894699
Langelier Index (@ 4C)	N/A	ı	-	-	0.981		0.648		7894700
Saturation pH (@ 20C)	N/A	-	-	-	6.49		7.14		7894699
Saturation pH (@ 4C)	N/A	-	-	-	6.73		7.38		7894700
Inorganics	•		-						•
Total Ammonia-N	mg/L	-	-	-	0.29	0.050	<0.050	0.050	7899195
Conductivity	umho/cm	-	-	-	1700	1.0	590	1.0	7897446
Total Organic Carbon (TOC)	mg/L	ı	-	-	30	0.40	5.4	0.40	7898671
Orthophosphate (P)	mg/L	-	-	ı	<0.010	0.010	<0.010	0.010	7897503
рН	рН	-	6.5:8.5	6.5:8.5	7.71		8.03		7897448
Total Phosphorus	mg/L	1	ı	0.01	0.41	0.02	0.026	0.004	7899137
Dissolved Sulphate (SO4)	mg/L	1	500	1	<1.0	1.0	23	1.0	7897496
Turbidity	NTU	-	5	-	45	0.1	0.7	0.1	7896234
Alkalinity (Total as CaCO3)	mg/L	1	30:500	ı	570	1.0	230	1.0	7897442
Dissolved Chloride (Cl-)	mg/L	1	250	1	200	2.0	25	1.0	7897487
Nitrite (N)	mg/L	1	1	ı	<0.010	0.010	<0.010	0.010	7897511
Nitrate (N)	mg/L	10	-	-	<0.10	0.10	5.80	0.10	7897511
Metals	•		-						•
Dissolved Calcium (Ca)	mg/L	-	-	-	200	0.05	87	0.05	7900083
Dissolved Magnesium (Mg)	mg/L	-	-	1	35	0.05	16	0.05	7900083
Dissolved Potassium (K)	mg/L	-	-	1	3	1	2	1	7900083
Dissolved Sodium (Na)	mg/L	-	200	-	120	0.5	11	0.5	7900083
Total Aluminum (Al)	ug/L	-	100	-	84	4.9	75	4.9	7903614

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical

Objectives [A/O] - Not Health Related, respectively

(Made under the Ontario Safe Drinking Water Act, 2002)

Criteria: Ontario Provincial Water Quality Objectives

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

RCAP - SURFACE WATER (WATER)

Bureau Veritas ID					SDE613		SDE614		
Sampling Date					2022/03/17		2022/03/17		
COC Number					870268-01-01		870268-01-01		
	UNITS	MAC	A/O	Criteria	SW1	RDL	SW2	RDL	QC Batch
Total Antimony (Sb)	ug/L	6	-	20	<0.50	0.50	<0.50	0.50	7903614
Total Arsenic (As)	ug/L	10	-	100	2.7	1.0	<1.0	1.0	7903614
Total Barium (Ba)	ug/L	1000	-	-	150	2.0	30	2.0	7903614
Total Beryllium (Be)	ug/L	-	-	11	<0.40	0.40	<0.40	0.40	7903614
Total Boron (B)	ug/L	5000	-	200	15	10	11	10	7903614
Total Cadmium (Cd)	ug/L	5	-	0.2	<0.090	0.090	<0.090	0.090	7903614
Total Calcium (Ca)	ug/L	-	-	1	240000	200	91000	200	7903614
Total Chromium (Cr)	ug/L	50	-	1	<5.0	5.0	<5.0	5.0	7903614
Total Cobalt (Co)	ug/L	-	-	0.9	2.4	0.50	<0.50	0.50	7903614
Total Copper (Cu)	ug/L	-	1000	5	4.9	0.90	1.6	0.90	7903614
Total Iron (Fe)	ug/L	-	300	300	39000	100	190	100	7903614
Total Lead (Pb)	ug/L	10	-	5	<0.50	0.50	<0.50	0.50	7903614
Total Magnesium (Mg)	ug/L	-	-	1	36000	50	18000	50	7903614
Total Manganese (Mn)	ug/L	-	50	ı	2700	2.0	40	2.0	7903614
Total Molybdenum (Mo)	ug/L	-	-	40	<0.50	0.50	0.64	0.50	7903614
Total Nickel (Ni)	ug/L	-	-	25	3.0	1.0	<1.0	1.0	7903614
Total Potassium (K)	ug/L	-	-	1	2400	200	2500	200	7903614
Total Selenium (Se)	ug/L	50	-	100	<2.0	2.0	<2.0	2.0	7903614
Total Silicon (Si)	ug/L	-	-	1	9400	50	2800	50	7903614
Total Silver (Ag)	ug/L	-	-	0.1	<0.090	0.090	<0.090	0.090	7903614
Total Sodium (Na)	ug/L	-	200000	ı	120000	100	12000	100	7903614
Total Strontium (Sr)	ug/L	-	-	1	390	1.0	150	1.0	7903614
Total Thallium (Tl)	ug/L	-	-	0.3	<0.050	0.050	<0.050	0.050	7903614
Total Titanium (Ti)	ug/L	-	-	-	7.3	5.0	5.1	5.0	7903614
Total Tungsten (W)	ug/L	-	-	30	<1.0	1.0	<1.0	1.0	7903614
Total Uranium (U)	ug/L	20	-	5	0.33	0.10	1.6	0.10	7903614
Total Vanadium (V)	ug/L	-	-	6	0.70	0.50	0.53	0.50	7903614
Total Zinc (Zn)	ug/L	-	5000	30	43	5.0	<5.0	5.0	7903614

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical

Objectives [A/O] - Not Health Related, respectively

(Made under the Ontario Safe Drinking Water Act, 2002)

Criteria: Ontario Provincial Water Quality Objectives

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

RCAP - SURFACE WATER (WATER)

Bureau Veritas ID					SDE613		SDE614		
Sampling Date					2022/03/17		2022/03/17		
COC Number					870268-01-01		870268-01-01		
	UNITS	MAC	A/O	Criteria	SW1	RDL	SW2	RDL	QC Batch
Total Zirconium (Zr)	ug/L	-	-	4	<1.0	1.0	<1.0	1.0	7903614

No Fill

No Exceedance

Grey

Exceeds 1 criteria policy/level

Black

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical

Objectives [A/O] - Not Health Related, respectively

(Made under the Ontario Safe Drinking Water Act, 2002)

Criteria: Ontario Provincial Water Quality Objectives

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

RCAP - SURFACE WATER (WATER)

Bureau Veritas ID					SDE615			SDE616		
Sampling Date					2022/03/17			2022/03/17		
COC Number					870268-01-01			870268-01-01		
	UNITS	MAC	A/O	Criteria	SW4	RDL	QC Batch	SW5	RDL	QC Batch
Calculated Parameters										
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	-	-	38	1.0	7894693	220	1.0	7894693
Calculated TDS	mg/L	-	500	-	45	1.0	7894701	240	1.0	7894701
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	-	-	<1.0	1.0	7894693	<1.0	1.0	7894693
Hardness (CaCO3)	mg/L	-	80:100	-	44	1.0	7894046	220	1.0	7894046
Langelier Index (@ 20C)	N/A	-	-	-	-1.19		7894699	0.165		7894699
Langelier Index (@ 4C)	N/A	-	-	-	-1.44		7894700	-0.0850		7894700
Saturation pH (@ 20C)	N/A	-	-	-	8.61		7894699	7.28		7894699
Saturation pH (@ 4C)	N/A	-	-	-	8.86		7894700	7.53		7894700
Inorganics	•		,							
Total Ammonia-N	mg/L	-	-	-	<0.050	0.050	7899195	1.2	0.050	7899195
Conductivity	umho/cm	-	-	-	89	1.0	7897446	440	1.0	7897446
Total Organic Carbon (TOC)	mg/L	1	-	-	3.9	0.40	7898671	23	2.0	7898671
Orthophosphate (P)	mg/L	-	-	-	0.017	0.010	7897503	0.10	0.010	7897503
рН	рН	-	6.5:8.5	6.5:8.5	7.42		7897448	7.44		7897448
Total Phosphorus	mg/L	-	-	0.01	0.09	0.02	7899137	1.5	0.02	7899137
Dissolved Sulphate (SO4)	mg/L	-	500	1	<1.0	1.0	7897496	<1.0	1.0	7897496
Turbidity	NTU	-	5	1	0.8	0.1	7896234	7.2	0.1	7896234
Alkalinity (Total as CaCO3)	mg/L	-	30:500	1	38	1.0	7897442	220	1.0	7897442
Dissolved Chloride (Cl-)	mg/L	-	250	1	2.9	1.0	7897487	12	1.0	7897487
Nitrite (N)	mg/L	1	-	1	<0.010	0.010	7897511	<0.010	0.010	7897511
Nitrate (N)	mg/L	10	-	1	<0.10	0.10	7897511	<0.10	0.10	7897511
Metals	•				•			•		
Dissolved Calcium (Ca)	mg/L	-	-	1	13	0.05	7904606	61	0.05	7900083
Dissolved Magnesium (Mg)	mg/L	-	-	ı	2.7	0.05	7904606	16	0.05	7900083
Dissolved Potassium (K)	mg/L	-	-	ı	2	1	7904606	5	1	7900083
Dissolved Sodium (Na)	mg/L	-	200	1	1.1	0.5	7904606	3.9	0.5	7900083
Total Aluminum (Al)	ug/L	-	100	1	100	49	7911141	1100	4.9	7903614

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] - Not Health Related, respectively

(Made under the Ontario Safe Drinking Water Act, 2002)

Criteria: Ontario Provincial Water Quality Objectives

exp Services Inc

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

RCAP - SURFACE WATER (WATER)

Bureau Veritas ID					SDE615			SDE616		
Sampling Date					2022/03/17			2022/03/17		
COC Number					870268-01-01			870268-01-01		
	UNITS	MAC	A/O	Criteria	SW4	RDL	QC Batch	SW5	RDL	QC Batch
Total Antimony (Sb)	ug/L	6	-	20	<5.0	5.0	7911141	<0.50	0.50	7903614
Total Arsenic (As)	ug/L	10	-	100	<10	10	7911141	1.2	1.0	7903614
Total Barium (Ba)	ug/L	1000	-	-	<20	20	7911141	35	2.0	7903614
Total Beryllium (Be)	ug/L	-	-	11	<4.0	4.0	7911141	<0.40	0.40	7903614
Total Boron (B)	ug/L	5000	-	200	<100	100	7911141	12	10	7903614
Total Cadmium (Cd)	ug/L	5	-	0.2	<0.90 (1)	0.90	7911141	<0.090	0.090	7903614
Total Calcium (Ca)	ug/L	-	-	-	8900	2000	7911141	67000	200	7903614
Total Chromium (Cr)	ug/L	50	-	-	<50	50	7911141	<5.0	5.0	7903614
Total Cobalt (Co)	ug/L	-	-	0.9	<5.0 (1)	5.0	7911141	1.0	0.50	7903614
Total Copper (Cu)	ug/L	-	1000	5	<9.0 (1)	9.0	7911141	7.7	0.90	7903614
Total Iron (Fe)	ug/L	-	300	300	<1000 (1)	1000	7911141	6200	100	7903614
Total Lead (Pb)	ug/L	10	-	5	<5.0	5.0	7911141	2.4	0.50	7903614
Total Magnesium (Mg)	ug/L	-	-	-	1600	500	7911141	18000	50	7903614
Total Manganese (Mn)	ug/L	-	50	-	410	20	7911141	450	2.0	7903614
Total Molybdenum (Mo)	ug/L	-	-	40	<5.0	5.0	7911141	0.94	0.50	7903614
Total Nickel (Ni)	ug/L	-	-	25	<10	10	7911141	1.8	1.0	7903614
Total Potassium (K)	ug/L	-	-	-	<2000	2000	7911141	5500	200	7903614
Total Selenium (Se)	ug/L	50	-	100	<20	20	7911141	<2.0	2.0	7903614
Total Silicon (Si)	ug/L	-	-	-	<500	500	7911141	3800	50	7903614
Total Silver (Ag)	ug/L	-	-	0.1	<0.90 (1)	0.90	7911141	<0.090	0.090	7903614
Total Sodium (Na)	ug/L	-	200000	-	1200	1000	7911141	4300	100	7903614
Total Strontium (Sr)	ug/L	-	-	-	<10	10	7911141	77	1.0	7903614
Total Thallium (TI)	ug/L	-	-	0.3	<0.50 (1)	0.50	7911141	<0.050	0.050	7903614
Total Titanium (Ti)	ug/L	-	-	-	<50	50	7911141	29	5.0	7903614
Total Tungsten (W)	ug/L	-	-	30	<10	10	7911141	<1.0	1.0	7903614
Total Uranium (U)	ug/L	20	-	5	<1.0	1.0	7911141	0.81	0.10	7903614
Total Vanadium (V)	ug/L	-	-	6	<5.0	5.0	7911141	2.8	0.50	7903614

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] -Not Health Related, respectively

(Made under the Ontario Safe Drinking Water Act, 2002)

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb.1999

(1) RDL exceeds criteria

exp Services Inc

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

RCAP - SURFACE WATER (WATER)

Bureau Veritas ID					SDE615			SDE616		
Sampling Date					2022/03/17			2022/03/17		
COC Number					870268-01-01			870268-01-01		
	UNITS	MAC	A/O	Criteria	SW4	RDL	QC Batch	SW5	RDL	QC Batch
/										i
Total Zinc (Zn)	ug/L	-	5000	30	<50 (1)	50	7911141	80	5.0	7903614

No Fill Grey

No Exceedance

Exceeds 1 criteria policy/level

Black

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

MAC,A/O: Ontario Drinking Water Standards - Maximum Acceptable Concentration [MAC] & Table 4-Chemical/Physical Objectives [A/O] -Not Health Related, respectively

(Made under the Ontario Safe Drinking Water Act, 2002)

Criteria: Ontario Provincial Water Quality Objectives

Ref. to MOEE Water Management document dated Feb. 1999

(1) RDL exceeds criteria

exp Services Inc

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

TEST SUMMARY

Bureau Veritas ID: SDE609

Collected:

2022/03/17

Sample ID: MW3 Matrix: Water Shipped:

Received: 2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7897442	N/A	2022/03/23	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7896580	N/A	2022/03/24	Automated Statchk
Chloride by Automated Colourimetry	KONE	7897487	N/A	2022/03/23	Alina Dobreanu
Conductivity	AT	7897446	N/A	2022/03/23	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7900197	N/A	2022/03/24	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7896344	N/A	2022/03/24	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7900101	2022/03/23	2022/03/24	Prempal Bhatti
Ion Balance (% Difference)	CALC	7896589	N/A	2022/03/24	Automated Statchk
Anion and Cation Sum	CALC	7896590	N/A	2022/03/24	Automated Statchk
Total Ammonia-N	LACH/NH4	7899195	N/A	2022/03/23	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	7897511	N/A	2022/03/23	Chandra Nandlal
рН	AT	7897448	2022/03/22	2022/03/23	Surinder Rai
Orthophosphate	KONE	7897503	N/A	2022/03/23	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7896591	N/A	2022/03/24	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7896592	N/A	2022/03/24	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7897496	N/A	2022/03/24	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7896579	N/A	2022/03/24	Automated Statchk

Bureau Veritas ID: SDE609 Dup

Collected: 2022/03/17 Shipped:

Sample ID: MW3 Matrix: Water

Received: 2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7900197	N/A	2022/03/24	Anna-Kay Gooden

Bureau Veritas ID: SDE610 Collected: Shipped:

2022/03/17

Sample ID: MW7A Matrix: Water

Received:

2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7897442	N/A	2022/03/23	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7894693	N/A	2022/03/24	Automated Statchk
Chloride by Automated Colourimetry	KONE	7897487	N/A	2022/03/23	Alina Dobreanu
Conductivity	AT	7897446	N/A	2022/03/23	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7897137	N/A	2022/03/24	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7894046	N/A	2022/03/24	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7900101	2022/03/23	2022/03/24	Prempal Bhatti
Ion Balance (% Difference)	CALC	7894694	N/A	2022/03/24	Automated Statchk
Anion and Cation Sum	CALC	7894695	N/A	2022/03/24	Automated Statchk
Total Ammonia-N	LACH/NH4	7899195	N/A	2022/03/23	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	7897511	N/A	2022/03/23	Chandra Nandlal
рН	AT	7897448	2022/03/22	2022/03/23	Surinder Rai
Orthophosphate	KONE	7897503	N/A	2022/03/23	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7894699	N/A	2022/03/24	Automated Statchk

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

TEST SUMMARY

Bureau Veritas ID: SDE610

Sample ID: MW7A

Collected:

2022/03/17

Matrix: Water

Shipped:

Received: 2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sat. pH and Langelier Index (@ 4C)	CALC	7894700	N/A	2022/03/24	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7897496	N/A	2022/03/24	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7894701	N/A	2022/03/24	Automated Statchk

Bureau Veritas ID: SDE611

Sample ID: MW7B

Matrix: Water

Collected: 2022/03/17

Shipped:

Received: 2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7897455	N/A	2022/03/23	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7894693	N/A	2022/03/24	Automated Statchk
Chloride by Automated Colourimetry	KONE	7897487	N/A	2022/03/23	Alina Dobreanu
Conductivity	AT	7897464	N/A	2022/03/23	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7897137	N/A	2022/03/24	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7894046	N/A	2022/03/24	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7900101	2022/03/23	2022/03/24	Prempal Bhatti
Ion Balance (% Difference)	CALC	7894694	N/A	2022/03/24	Automated Statchk
Anion and Cation Sum	CALC	7894695	N/A	2022/03/24	Automated Statchk
Total Ammonia-N	LACH/NH4	7899195	N/A	2022/03/23	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	7897511	N/A	2022/03/23	Chandra Nandlal
pH	AT	7897458	2022/03/22	2022/03/23	Surinder Rai
Orthophosphate	KONE	7897503	N/A	2022/03/23	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7894699	N/A	2022/03/24	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7894700	N/A	2022/03/24	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7897496	N/A	2022/03/24	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7894701	N/A	2022/03/24	Automated Statchk

Bureau Veritas ID: SDE611 Dup Sample ID: MW7B

Matrix: Water

Collected: 2022/03/17 Shipped: **Received:** 2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7897455	N/A	2022/03/23	Surinder Rai
Conductivity	AT	7897464	N/A	2022/03/23	Surinder Rai
рН	AT	7897458	2022/03/22	2022/03/23	Surinder Rai

Bureau Veritas ID: SDE612 Sample ID: MW9

Collected: Shipped:

2022/03/17

Matrix: Water

Received: 2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7897442	N/A	2022/03/23	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7894693	N/A	2022/03/24	Automated Statchk
Chloride by Automated Colourimetry	KONE	7897487	N/A	2022/03/23	Alina Dobreanu

exp Services Inc

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

TEST SUMMARY

Collected: Bureau Veritas ID: SDE612 2022/03/17

Shipped:

Sample ID: MW9 Matrix: Water **Received:** 2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	7897446	N/A	2022/03/23	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7897137	N/A	2022/03/24	Anna-Kay Gooden
Hardness (calculated as CaCO3)		7894046	N/A	2022/03/24	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7900101	2022/03/23	2022/03/24	Prempal Bhatti
Ion Balance (% Difference)	CALC	7894694	N/A	2022/03/24	Automated Statchk
Anion and Cation Sum	CALC	7894695	N/A	2022/03/24	Automated Statchk
Total Ammonia-N	LACH/NH4	7899195	N/A	2022/03/23	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	7897511	N/A	2022/03/23	Chandra Nandlal
рН	AT	7897448	2022/03/22	2022/03/23	Surinder Rai
Orthophosphate	KONE	7897503	N/A	2022/03/23	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7894699	N/A	2022/03/24	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7894700	N/A	2022/03/24	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7897496	N/A	2022/03/24	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7894701	N/A	2022/03/24	Automated Statchk

Bureau Veritas ID: SDE613 Collected: 2022/03/17 Sample ID: SW1

Shipped:

2022/03/17

Received: Matrix: Water **Test Description** Instrumentation Batch **Extracted Date Analyzed** Analyst

Alkalinity	AT	7897442	N/A	2022/03/23	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7894693	N/A	2022/03/24	Automated Statchk
Chloride by Automated Colourimetry	KONE	7897487	N/A	2022/03/23	Alina Dobreanu
Conductivity	AT	7897446	N/A	2022/03/23	Surinder Rai
Hardness (calculated as CaCO3)		7894046	N/A	2022/03/24	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	7900083	2022/03/23	2022/03/24	Suban Kanapathippllai
Total Metals Analysis by ICPMS	ICP/MS	7903614	N/A	2022/03/25	Arefa Dabhad
Total Ammonia-N	LACH/NH4	7899195	N/A	2022/03/23	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	7897511	N/A	2022/03/23	Chandra Nandlal
рН	AT	7897448	2022/03/22	2022/03/23	Surinder Rai
Orthophosphate	KONE	7897503	N/A	2022/03/23	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7894699	N/A	2022/03/24	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7894700	N/A	2022/03/24	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7897496	N/A	2022/03/24	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7894701	N/A	2022/03/24	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	7898671	N/A	2022/03/23	Anna-Kay Gooden
Total Phosphorus (Colourimetric)	LACH/P	7899137	2022/03/23	2022/03/24	Nimarta Singh
Turbidity	AT	7896234	N/A	2022/03/22	Roya Fathitil

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

TEST SUMMARY

Bureau Veritas ID: SDE613 Dup

Sample ID: SW1 Matrix: Water **Collected:** 2022/03/17

Shipped:

Received: 2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Metals Analysis by ICPMS	ICP/MS	7903614	N/A	2022/03/25	Arefa Dabhad

Bureau Veritas ID: SDE614

Sample ID: SW2 Matrix: Water **Collected:** 2022/03/17

Shipped:

Received: 2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7897442	N/A	2022/03/23	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7894693	N/A	2022/03/24	Automated Statchk
Chloride by Automated Colourimetry	KONE	7897487	N/A	2022/03/23	Alina Dobreanu
Conductivity	AT	7897446	N/A	2022/03/23	Surinder Rai
Hardness (calculated as CaCO3)		7894046	N/A	2022/03/24	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	7900083	2022/03/23	2022/03/24	Suban Kanapathippllai
Total Metals Analysis by ICPMS	ICP/MS	7903614	N/A	2022/03/25	Arefa Dabhad
Total Ammonia-N	LACH/NH4	7899195	N/A	2022/03/23	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	7897511	N/A	2022/03/23	Chandra Nandlal
pH	AT	7897448	2022/03/22	2022/03/23	Surinder Rai
Orthophosphate	KONE	7897503	N/A	2022/03/23	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7894699	N/A	2022/03/24	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7894700	N/A	2022/03/24	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7897496	N/A	2022/03/24	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7894701	N/A	2022/03/24	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	7898671	N/A	2022/03/23	Anna-Kay Gooden
Total Phosphorus (Colourimetric)	LACH/P	7899137	2022/03/23	2022/03/24	Nimarta Singh
Turbidity	AT	7896234	N/A	2022/03/22	Roya Fathitil

Bureau Veritas ID: SDE614 Dup

Sample ID: SW2

Matrix: Water

Collected: 2022/03/17 Shipped:

2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7897442	N/A	2022/03/23	Surinder Rai
Conductivity	AT	7897446	N/A	2022/03/23	Surinder Rai
Lab Filtered Metals Analysis by ICP	ICP	7900083	2022/03/23	2022/03/24	Suban Kanapathippllai
рН	AT	7897448	2022/03/22	2022/03/23	Surinder Rai

Bureau Veritas ID: SDE615 Sample ID: SW4

Matrix: Water

Collected: 2022/03/17

Shipped:

Received:

Received: 2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7897442	N/A	2022/03/23	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7894693	N/A	2022/03/24	Automated Statchk
Chloride by Automated Colourimetry	KONE	7897487	N/A	2022/03/23	Alina Dobreanu

exp Services Inc

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

TEST SUMMARY

Bureau Veritas ID: SDE615

Collected: 2022/03/17 Shipped:

Sample ID: SW4 Matrix: Water

Received: 2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	7897446	N/A	2022/03/23	Surinder Rai
Hardness (calculated as CaCO3)		7894046	N/A	2022/03/24	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	7904606	2022/03/25	2022/03/28	Suban Kanapathippllai
Total Metals Analysis by ICPMS	ICP/MS	7911141	N/A	2022/03/30	Prempal Bhatti
Total Ammonia-N	LACH/NH4	7899195	N/A	2022/03/23	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	7897511	N/A	2022/03/23	Chandra Nandlal
рН	AT	7897448	2022/03/22	2022/03/23	Surinder Rai
Orthophosphate	KONE	7897503	N/A	2022/03/23	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7894699	N/A	2022/03/24	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7894700	N/A	2022/03/24	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7897496	N/A	2022/03/24	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7894701	N/A	2022/03/24	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	7898671	N/A	2022/03/23	Anna-Kay Gooden
Total Phosphorus (Colourimetric)	LACH/P	7899137	2022/03/23	2022/03/24	Nimarta Singh
Turbidity	AT	7896234	N/A	2022/03/22	Roya Fathitil

Bureau Veritas ID: SDE616

Collected: 2022/03/17

Sample ID: SW5

Shipped:

Matrix: Water

Received: 2022/03/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7897442	N/A	2022/03/23	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7894693	N/A	2022/03/24	Automated Statchk
Chloride by Automated Colourimetry	KONE	7897487	N/A	2022/03/23	Alina Dobreanu
Conductivity	AT	7897446	N/A	2022/03/23	Surinder Rai
Hardness (calculated as CaCO3)		7894046	N/A	2022/03/24	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	7900083	2022/03/23	2022/03/24	Suban Kanapathippllai
Total Metals Analysis by ICPMS	ICP/MS	7903614	N/A	2022/03/25	Arefa Dabhad
Total Ammonia-N	LACH/NH4	7899195	N/A	2022/03/23	Raiq Kashif
Nitrate & Nitrite as Nitrogen in Water	LACH	7897511	N/A	2022/03/23	Chandra Nandlal
рН	AT	7897448	2022/03/22	2022/03/23	Surinder Rai
Orthophosphate	KONE	7897503	N/A	2022/03/23	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7894699	N/A	2022/03/24	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7894700	N/A	2022/03/24	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7897496	N/A	2022/03/24	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7894701	N/A	2022/03/24	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	7898671	N/A	2022/03/23	Anna-Kay Gooden
Total Phosphorus (Colourimetric)	LACH/P	7899137	2022/03/23	2022/03/24	Nimarta Singh
Turbidity	AT	7896234	N/A	2022/03/22	Roya Fathitil

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	6.3°C
-----------	-------

Sample SDE615 [SW4]: Metals Analysis: Due to limited amount of sample available for analysis, a smaller than usual portion of the sample was used. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: KCH-21008183
Site Location: HUNTER FARMS

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	ındard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7896234	Turbidity	2022/03/22			112	85 - 115	<0.1	NTU	0.68	20		
7897137	Dissolved Organic Carbon	2022/03/24	96	80 - 120	97	80 - 120	<0.40	mg/L	0.39	20		
7897442	Alkalinity (Total as CaCO3)	2022/03/23			93	85 - 115	<1.0	mg/L	0.98	20		
7897446	Conductivity	2022/03/23			100	85 - 115	<1.0	umho/c m	0.85	25		
7897448	рН	2022/03/23			102	98 - 103			0.96	N/A		
7897455	Alkalinity (Total as CaCO3)	2022/03/23			94	85 - 115	<1.0	mg/L	0.72	20		
7897458	рН	2022/03/23			102	98 - 103			0.26	N/A		
7897464	Conductivity	2022/03/23			100	85 - 115	<1.0	umho/c m	0.36	25		
7897487	Dissolved Chloride (Cl-)	2022/03/23	101	80 - 120	103	80 - 120	<1.0	mg/L	4.7	20		
7897496	Dissolved Sulphate (SO4)	2022/03/24	125	75 - 125	103	80 - 120	<1.0	mg/L	1.9	20		
7897503	Orthophosphate (P)	2022/03/23	107	75 - 125	102	80 - 120	<0.010	mg/L	NC	25		
7897511	Nitrate (N)	2022/03/23	105	80 - 120	102	80 - 120	<0.10	mg/L	NC	20		
7897511	Nitrite (N)	2022/03/23	88	80 - 120	102	80 - 120	<0.010	mg/L	NC	20		
7898671	Total Organic Carbon (TOC)	2022/03/23	94	80 - 120	98	80 - 120	<0.40	mg/L	2.7	20		
7899137	Total Phosphorus	2022/03/24	NC	80 - 120	107	80 - 120	<0.004	mg/L	4.3	20	115	80 - 120
7899195	Total Ammonia-N	2022/03/23	98	75 - 125	100	80 - 120	<0.050	mg/L	0.13	20		
7900083	Dissolved Calcium (Ca)	2022/03/24	93	80 - 120	101	80 - 120	<0.05	mg/L	0.012	25		
7900083	Dissolved Magnesium (Mg)	2022/03/24	96	80 - 120	98	80 - 120	<0.05	mg/L	0.43	25		
7900083	Dissolved Potassium (K)	2022/03/24	99	80 - 120	100	80 - 120	<1	mg/L	1.1	25		
7900083	Dissolved Sodium (Na)	2022/03/24	92	80 - 120	99	80 - 120	<0.5	mg/L	3.7	25		
7900101	Dissolved Aluminum (AI)	2022/03/24	101	80 - 120	103	80 - 120	<4.9	ug/L	NC	20		
7900101	Dissolved Antimony (Sb)	2022/03/24	104	80 - 120	103	80 - 120	<0.50	ug/L	NC	20		
7900101	Dissolved Arsenic (As)	2022/03/24	102	80 - 120	102	80 - 120	<1.0	ug/L	NC	20		
7900101	Dissolved Barium (Ba)	2022/03/24	104	80 - 120	104	80 - 120	<2.0	ug/L	0.56	20		
7900101	Dissolved Beryllium (Be)	2022/03/24	104	80 - 120	103	80 - 120	<0.40	ug/L	NC	20		
7900101	Dissolved Boron (B)	2022/03/24	96	80 - 120	97	80 - 120	<10	ug/L	NC	20		
7900101	Dissolved Cadmium (Cd)	2022/03/24	102	80 - 120	102	80 - 120	<0.090	ug/L	NC	20		
7900101	Dissolved Calcium (Ca)	2022/03/24	91	80 - 120	105	80 - 120	<200	ug/L	1.6	20		
7900101	Dissolved Chromium (Cr)	2022/03/24	99	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: KCH-21008183
Site Location: HUNTER FARMS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7900101	Dissolved Cobalt (Co)	2022/03/24	97	80 - 120	97	80 - 120	<0.50	ug/L	NC	20		
7900101	Dissolved Copper (Cu)	2022/03/24	98	80 - 120	99	80 - 120	<0.90	ug/L	NC	20		
7900101	Dissolved Iron (Fe)	2022/03/24	100	80 - 120	100	80 - 120	<100	ug/L	NC	20		
7900101	Dissolved Lead (Pb)	2022/03/24	94	80 - 120	96	80 - 120	<0.50	ug/L	NC	20		
7900101	Dissolved Magnesium (Mg)	2022/03/24	100	80 - 120	101	80 - 120	<50	ug/L	0.17	20		
7900101	Dissolved Manganese (Mn)	2022/03/24	103	80 - 120	102	80 - 120	<2.0	ug/L	NC	20		
7900101	Dissolved Molybdenum (Mo)	2022/03/24	104	80 - 120	102	80 - 120	<0.50	ug/L	5.2	20		
7900101	Dissolved Nickel (Ni)	2022/03/24	97	80 - 120	98	80 - 120	<1.0	ug/L	NC	20		
7900101	Dissolved Phosphorus (P)	2022/03/24	108	80 - 120	113	80 - 120	<100	ug/L	NC	20		
7900101	Dissolved Potassium (K)	2022/03/24	101	80 - 120	99	80 - 120	<200	ug/L	1.3	20		
7900101	Dissolved Selenium (Se)	2022/03/24	100	80 - 120	100	80 - 120	<2.0	ug/L	NC	20		
7900101	Dissolved Silicon (Si)	2022/03/24	101	80 - 120	103	80 - 120	<50	ug/L	1.2	20		
7900101	Dissolved Silver (Ag)	2022/03/24	96	80 - 120	97	80 - 120	<0.090	ug/L	NC	20		
7900101	Dissolved Sodium (Na)	2022/03/24	97	80 - 120	99	80 - 120	<100	ug/L	0.90	20		
7900101	Dissolved Strontium (Sr)	2022/03/24	101	80 - 120	101	80 - 120	<1.0	ug/L	1.6	20		
7900101	Dissolved Thallium (TI)	2022/03/24	103	80 - 120	102	80 - 120	<0.050	ug/L	NC	20		
7900101	Dissolved Titanium (Ti)	2022/03/24	102	80 - 120	102	80 - 120	<5.0	ug/L	NC	20		
7900101	Dissolved Uranium (U)	2022/03/24	104	80 - 120	103	80 - 120	<0.10	ug/L	1.3	20		
7900101	Dissolved Vanadium (V)	2022/03/24	102	80 - 120	100	80 - 120	<0.50	ug/L	4.2	20		
7900101	Dissolved Zinc (Zn)	2022/03/24	100	80 - 120	99	80 - 120	<5.0	ug/L	NC	20		
7900197	Dissolved Organic Carbon	2022/03/24	97	80 - 120	99	80 - 120	<0.40	mg/L	0.15	20		
7903614	Total Aluminum (AI)	2022/03/25	114	80 - 120	105	80 - 120	<4.9	ug/L	3.9	20		
7903614	Total Antimony (Sb)	2022/03/25	105	80 - 120	104	80 - 120	<0.50	ug/L	NC	20		
7903614	Total Arsenic (As)	2022/03/25	103	80 - 120	107	80 - 120	<1.0	ug/L	0.44	20		
7903614	Total Barium (Ba)	2022/03/25	99	80 - 120	103	80 - 120	<2.0	ug/L	1.6	20		
7903614	Total Beryllium (Be)	2022/03/25	104	80 - 120	104	80 - 120	<0.40	ug/L	NC	20		
7903614	Total Boron (B)	2022/03/25	93	80 - 120	95	80 - 120	<10	ug/L	1.1	20		
7903614	Total Cadmium (Cd)	2022/03/25	100	80 - 120	102	80 - 120	<0.090	ug/L	NC	20		
7903614	Total Calcium (Ca)	2022/03/25	-4.6 (1)	80 - 120	105	80 - 120	<200	ug/L	2.2	20		
7903614	Total Chromium (Cr)	2022/03/25	98	80 - 120	101	80 - 120	<5.0	ug/L	NC	20		
7903614	Total Cobalt (Co)	2022/03/25	102	80 - 120	105	80 - 120	<0.50	ug/L	0.49	20		

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: KCH-21008183
Site Location: HUNTER FARMS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7903614	Total Copper (Cu)	2022/03/25	104	80 - 120	105	80 - 120	<0.90	ug/L	1.5	20		
7903614	Total Iron (Fe)	2022/03/25	89	80 - 120	105	80 - 120	<100	ug/L	0.72	20		
7903614	Total Lead (Pb)	2022/03/25	98	80 - 120	98	80 - 120	<0.50	ug/L	NC	20		
7903614	Total Magnesium (Mg)	2022/03/25	93	80 - 120	107	80 - 120	<50	ug/L	1.2	20		
7903614	Total Manganese (Mn)	2022/03/25	46 (1)	80 - 120	102	80 - 120	<2.0	ug/L	0.72	20		
7903614	Total Molybdenum (Mo)	2022/03/25	102	80 - 120	102	80 - 120	<0.50	ug/L	NC	20		
7903614	Total Nickel (Ni)	2022/03/25	99	80 - 120	103	80 - 120	<1.0	ug/L	9.2	20		
7903614	Total Potassium (K)	2022/03/25	107	80 - 120	107	80 - 120	<200	ug/L	0.31	20		
7903614	Total Selenium (Se)	2022/03/25	108	80 - 120	110	80 - 120	<2.0	ug/L	NC	20		
7903614	Total Silicon (Si)	2022/03/25	95	80 - 120	99	80 - 120	<50	ug/L	1.6	20		
7903614	Total Silver (Ag)	2022/03/25	97	80 - 120	100	80 - 120	<0.090	ug/L	NC	20		
7903614	Total Sodium (Na)	2022/03/25	58 (1)	80 - 120	109	80 - 120	<100	ug/L	2.1	20		
7903614	Total Strontium (Sr)	2022/03/25	90	80 - 120	98	80 - 120	<1.0	ug/L	0.38	20		
7903614	Total Thallium (TI)	2022/03/25	103	80 - 120	101	80 - 120	<0.050	ug/L	NC	20		
7903614	Total Titanium (Ti)	2022/03/25	99	80 - 120	100	80 - 120	<5.0	ug/L	3.8	20		
7903614	Total Tungsten (W)	2022/03/25	105	80 - 120	108	80 - 120	<1.0	ug/L	NC	20		
7903614	Total Uranium (U)	2022/03/25	102	80 - 120	103	80 - 120	<0.10	ug/L	NC	20		
7903614	Total Vanadium (V)	2022/03/25	101	80 - 120	102	80 - 120	<0.50	ug/L	0.29	20		
7903614	Total Zinc (Zn)	2022/03/25	99	80 - 120	106	80 - 120	<5.0	ug/L	0.23	20		
7903614	Total Zirconium (Zr)	2022/03/25	105	80 - 120	104	80 - 120	<1.0	ug/L	NC	20		
7904606	Dissolved Calcium (Ca)	2022/03/28	98	80 - 120	97	80 - 120	<0.05	mg/L	3.5	25		
7904606	Dissolved Magnesium (Mg)	2022/03/28	100	80 - 120	96	80 - 120	<0.05	mg/L	3.2	25		
7904606	Dissolved Potassium (K)	2022/03/28	105	80 - 120	98	80 - 120	<1	mg/L	3.8	25		
7904606	Dissolved Sodium (Na)	2022/03/28	113	80 - 120	97	80 - 120	<0.5	mg/L	2.3	25		
7911141	Total Aluminum (AI)	2022/03/30	99	80 - 120	99	80 - 120	<4.9	ug/L	3.4	20		
7911141	Total Antimony (Sb)	2022/03/30	107	80 - 120	105	80 - 120	<0.50	ug/L	NC	20		
7911141	Total Arsenic (As)	2022/03/30	103	80 - 120	99	80 - 120	<1.0	ug/L	NC	20		
7911141	Total Barium (Ba)	2022/03/30	100	80 - 120	97	80 - 120	<2.0	ug/L	NC	20		
7911141	Total Beryllium (Be)	2022/03/30	103	80 - 120	98	80 - 120	<0.40	ug/L	NC	20		
7911141	Total Boron (B)	2022/03/30	99	80 - 120	95	80 - 120	<10	ug/L	NC	20		
7911141	Total Cadmium (Cd)	2022/03/30	103	80 - 120	100	80 - 120	<0.090	ug/L	NC	20		

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: KCH-21008183
Site Location: HUNTER FARMS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7911141	Total Calcium (Ca)	2022/03/30	99	80 - 120	97	80 - 120	<200	ug/L	NC	20		
7911141	Total Chromium (Cr)	2022/03/30	95	80 - 120	92	80 - 120	<5.0	ug/L	NC	20		
7911141	Total Cobalt (Co)	2022/03/30	96	80 - 120	93	80 - 120	<0.50	ug/L	NC	20		
7911141	Total Copper (Cu)	2022/03/30	98	80 - 120	94	80 - 120	<0.90	ug/L	1.1	20		
7911141	Total Iron (Fe)	2022/03/30	99	80 - 120	97	80 - 120	<100	ug/L	NC	20		
7911141	Total Lead (Pb)	2022/03/30	97	80 - 120	93	80 - 120	<0.50	ug/L	NC	20		
7911141	Total Magnesium (Mg)	2022/03/30	97	80 - 120	95	80 - 120	<50	ug/L	NC	20		
7911141	Total Manganese (Mn)	2022/03/30	99	80 - 120	95	80 - 120	<2.0	ug/L	3.7	20		
7911141	Total Molybdenum (Mo)	2022/03/30	99	80 - 120	96	80 - 120	<0.50	ug/L	NC	20		
7911141	Total Nickel (Ni)	2022/03/30	98	80 - 120	95	80 - 120	<1.0	ug/L	0.11	20		
7911141	Total Potassium (K)	2022/03/30	98	80 - 120	95	80 - 120	<200	ug/L	NC	20		
7911141	Total Selenium (Se)	2022/03/30	104	80 - 120	103	80 - 120	<2.0	ug/L	NC	20		
7911141	Total Silicon (Si)	2022/03/30	98	80 - 120	98	80 - 120	<50	ug/L	NC	20		
7911141	Total Silver (Ag)	2022/03/30	99	80 - 120	95	80 - 120	<0.090	ug/L	NC	20		
7911141	Total Sodium (Na)	2022/03/30	95	80 - 120	96	80 - 120	<100	ug/L	4.9	20		
7911141	Total Strontium (Sr)	2022/03/30	98	80 - 120	95	80 - 120	<1.0	ug/L	NC	20		
7911141	Total Thallium (TI)	2022/03/30	99	80 - 120	99	80 - 120	<0.050	ug/L	NC	20		
7911141	Total Titanium (Ti)	2022/03/30	97	80 - 120	97	80 - 120	<5.0	ug/L	0.036	20		
7911141	Total Tungsten (W)	2022/03/30	95	80 - 120	92	80 - 120	<1.0	ug/L	NC	20		
7911141	Total Uranium (U)	2022/03/30	100	80 - 120	100	80 - 120	<0.10	ug/L	NC	20		
7911141	Total Vanadium (V)	2022/03/30	98	80 - 120	95	80 - 120	<0.50	ug/L	NC	20		
7911141	Total Zinc (Zn)	2022/03/30	101	80 - 120	97	80 - 120	<5.0	ug/L	NC	20		

Bureau Veritas Job #: C272761 Report Date: 2022/03/30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: KCH-21008183

Site Location: HUNTER FARMS

Sampler Initials: MB

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7911141	Total Zirconium (Zr)	2022/03/30	88	80 - 120	98	80 - 120	<1.0	ug/L	NC	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BUREAU VERITAS		Bureau Veritas 6740 Campobello Road, Mis	ssissauga, Ontario	Canada L5N 2l	L8 Tel:(905) 817-			(905) 817-5	777 www.	bvna.com	F	REC'		LONDO		11111111	stine (Mar-22 15:15 Gripton	Page of
		VOICE TO:		10		REPO	RT TO:						5 1000	INFORMATION:		,		0	
mpany Name	#28124 exp Ser Accounts Payabl			Company	Malli I	Oobbin					Quotation#		B9171	8		MTA	M ENV-1605		Bottle Order #:
dress:	15701 Robin's H			Attention Address:	110,111						P.O. #: Project:		KCH-2	1006317 ZIC	06183				870268
	London ON N5V										Project Nam	0:	My	inter For	ns			COC #:	Project Manager:
d:	(519) 963-3000) 963-1152	Tel:	lealli e	lobbin@exp.com	Fax:				Site #:		4.17	110					Christine Gripton
naif:		aren.Burke@exp.com	WIENDED FOR	Email:	NAME OF TAXABLE PARTY.						Sampled By	_	PI FASE B	E SPECIFIC)		+	11111	C#870268-01-01 Turnaround Time (TAT) F	amufendi.
MOE REC	SUBMITTED ON T	G WATER OR WATER I HE BUREAU VERITAS	DRINKING WAT	TER CHAIN	OF CUSTOD	Y MUST BE		- F					LENGE	L or Low loy			3.58	Please provide advance notice f	
Regulati	ion 153 (2011)	Ott	ner Regulations		Special	Instructions	ircle)	illere								14.00		andard) TAT: if Rush TAT is not specified):	R
	Res/Park Mediur		Sanitary Sewer Byl				Field Filtered (please circle): Metals / Hg / Cr VI	Lab F		PMS								5-7 Working days for most tests.	1
Table 2	Ind/Comm Coarse		Storm Sewer Bylaw inicipality				gald)	sive	ater	Metals by ICPMS						Plea days	se note: St	andard TAT for certain tests such as a your Project Manager for details.	BOD and Dioxins/Furans are > 5
Table 3	Jaginonas [] For K	The state of the s	Reg 406 Table				ered Is / F	rehen	8	etals						4.5		Rush TAT (if applies to entire sub	nission)
		Other OO	NAS				J Filt	Comp	Surface Water	N peu						100	Required:		ne Required:
		a on Certificate of Analy		-			Field	RCAp -	CAP	ab File							Bottles		call lab for #)
Sampl	le Barcode Label	Sample (Location) Iden		late Sampled	Time Sample	d Matrix		S.	RC	3		-	-		-	* 01	Bottes	Comm	ents
		WM3		Nor 17	AM	GW		X										odinas	
		ATWAY		1	PM	1		X										1	
		TUM	3		PM			×											
		PUMM			pur	V		X										V	
		Swil			AM	Sw			X									Phad	
					A.A				V									1 Wills	
		SW2			AW				X										
		SWY			PM				X										
		SWS		V	Par				X									V	
																		00	Zce
	RELINQUISHED BY: (S	Signature/Print)	Date: (YY/MM		Time	RECEIVED	BY: (Signature			Date: (YY/N	MM/DD)	Tir		# jars used and not submitted			Laborato	ory Use Only	
114	116/1	derello B	92/03/17				相似		40.81	20226	4	15			Time Sensit	ve T		e (°C) on Recei Custody S	eal Yes No
NI ESS OTUES	DWISE ACREED TO IN	RITING, WORK SUBMITTED C	IN THIS CUAIN CT	CHETODY IS S	UP IECT TO BUD	Q4 R		AND COND			3 18	FCUSTO		ENTIS			3,) I much	
IS THE RESP	ENT AND ACCEPTANCE ONSIBILITY OF THE REI	OF OUR TERMS WHICH ARE LINQUISHER TO ENSURE THE	AVAILABLE FOR V	EWING AT W	W.BVNA.COM/TE USTODY RECOR	ERMS-AND-CONDITI D. AN INCOMPLETE	ONS. CHAIN OF CUS	TODY MAY	RESULT						MUST BE KEP UNTIL DE	T COOL (< 10°C)FF DBUREAU	ROM TIME OF SAMPLING VERITAS	Bureau Veritas Yellow: Cli
MPLE CONT	AINER, PRESERVATION	, HOLD TIME AND PACKAGE	INFORMATION CA	N BE VIEWED	AT WWW.BVNA.C	OM/RESOURCES/CI	AAIN-OF-CUST	DDY-FORMS								-1.1	A1.00		

Page 25 of 26

Client Project #: KCH-21008183 Site Location: HUNTER FARMS

Sampler Initials: MB

Exceedance Summary Table – ODWS (2002)

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
MW7A	SDE610-02	Dissolved Uranium (U)	20	35	0.10	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Exceedance Summary Table – Prov. Water Quality Obj. Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
MW7A	SDE610-02	Dissolved Molybdenum (Mo)	40	45	0.50	ug/L
MW7A	SDE610-02	Dissolved Uranium (U)	5	35	0.10	ug/L
MW7A	SDE610-02	Dissolved Zinc (Zn)	30	38	5.0	ug/L
MW7B	SDE611-02	Dissolved Zinc (Zn)	30	36	5.0	ug/L
SW1	SDE613-03-Lab Dup	Total Cobalt (Co)	0.9	2.4	0.50	ug/L
SW1	SDE613-03	Total Cobalt (Co)	0.9	2.4	0.50	ug/L
SW1	SDE613-03	Total Iron (Fe)	300	39000	100	ug/L
SW1	SDE613-03-Lab Dup	Total Iron (Fe)	300	39000	100	ug/L
SW1	SDE613-04	Total Phosphorus	0.01	0.41	0.02	mg/L
SW1	SDE613-03-Lab Dup	Total Zinc (Zn)	30	43	5.0	ug/L
SW1	SDE613-03	Total Zinc (Zn)	30	43	5.0	ug/L
SW2	SDE614-04	Total Phosphorus	0.01	0.026	0.004	mg/L
SW4	SDE615-04	Total Phosphorus	0.01	0.09	0.02	mg/L
SW5	SDE616-03	Total Cobalt (Co)	0.9	1.0	0.50	ug/L
SW5	SDE616-03	Total Copper (Cu)	5	7.7	0.90	ug/L
SW5	SDE616-03	Total Iron (Fe)	300	6200	100	ug/L
SW5	SDE616-04	Total Phosphorus	0.01	1.5	0.02	mg/L
SW5	SDE616-03	Total Zinc (Zn)	30	80	5.0	ug/L

Detection Limit Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
SW4	SDE615-03	Total Cadmium (Cd)	0.2	<0.90	0.90	ug/L
SW4	SDE615-03	Total Cobalt (Co)	0.9	<5.0	5.0	ug/L
SW4	SDE615-03	Total Copper (Cu)	5	<9.0	9.0	ug/L
SW4	SDE615-03	Total Iron (Fe)	300	<1000	1000	ug/L
SW4	SDE615-03	Total Silver (Ag)	0.1	<0.90	0.90	ug/L
SW4	SDE615-03	Total Thallium (TI)	0.3	<0.50	0.50	ug/L
SW4	SDE615-03	Total Zinc (Zn)	30	<50	50	ug/L
SW4	SDE615-03	Total Zirconium (Zr)	4	<10	10	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Your Project #: LON-21008138 Site Location: HUNTER FARM Your C.O.C. #: 839959-01-01

Attention: Heather Jaggard

exp Services Inc London Branch 15701 Robin's Hill Rd Unit 2 London, ON CANADA N5V 0A5

> Report Date: 2021/10/08 Report #: R6845736

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1S2764 Received: 2021/09/29, 08:30

Sample Matrix: Water # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	3	N/A	2021/10/01	CAM SOP-00448	SM 23 2320 B m
Alkalinity	5	N/A	2021/10/04	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2021/10/01	CAM SOP-00102	APHA 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	2	N/A	2021/10/04	CAM SOP-00102	APHA 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	5	N/A	2021/10/05	CAM SOP-00102	APHA 4500-CO2 D
Chloride by Automated Colourimetry	4	N/A	2021/10/01	CAM SOP-00463	SM 23 4500-Cl E m
Chloride by Automated Colourimetry	4	N/A	2021/10/04	CAM SOP-00463	SM 23 4500-Cl E m
Conductivity	3	N/A	2021/10/01	CAM SOP-00414	SM 23 2510 m
Conductivity	5	N/A	2021/10/04	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2021/10/04	CAM SOP-00446	SM 23 5310 B m
Dissolved Organic Carbon (DOC) (1)	3	N/A	2021/10/05	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	4	N/A	2021/10/04	CAM SOP	SM 2340 B
				00102/00408/00447	
Hardness (calculated as CaCO3)	4	N/A	2021/10/05		SM 2340 B
				00102/00408/00447	
Lab Filtered Metals Analysis by ICP	4			CAM SOP-00408	EPA 6010D m
Lab Filtered Metals by ICPMS	8			CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	3	N/A	2021/10/05	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	1	N/A	2021/10/08	CAM SOP-00447	EPA 6020B m
Ion Balance (% Difference)	4	N/A	2021/10/05		
Anion and Cation Sum	4	N/A	2021/10/05		
Total Ammonia-N	1	N/A	2021/10/01	CAM SOP-00441	USGS I-2522-90 m
Total Ammonia-N	7	N/A	2021/10/04	CAM SOP-00441	USGS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	4	N/A	2021/10/01	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Nitrate (NO3) and Nitrite (NO2) in Water (2)	4	N/A	2021/10/04	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	5	2021/10/01	2021/10/04	CAM SOP-00413	SM 4500H+ B m
рН	3	2021/09/30	2021/10/01	CAM SOP-00413	SM 4500H+ B m
Orthophosphate	4	N/A	2021/10/01	CAM SOP-00461	EPA 365.1 m
Orthophosphate	4	N/A	2021/10/04	CAM SOP-00461	EPA 365.1 m

Your Project #: LON-21008138 Site Location: HUNTER FARM Your C.O.C. #: 839959-01-01

Attention: Heather Jaggard

exp Services Inc London Branch 15701 Robin's Hill Rd Unit 2 London, ON CANADA N5V 0A5

Report Date: 2021/10/08

Report #: R6845736 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1S2764 Received: 2021/09/29, 08:30

Sample Matrix: Water # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Sat. pH and Langelier Index (@ 20C)	8	N/A	2021/10/05		Auto Calc
Sat. pH and Langelier Index (@ 4C)	8	N/A	2021/10/05		Auto Calc
Sulphate by Automated Colourimetry	4	N/A	2021/10/01	CAM SOP-00464	EPA 375.4 m
Sulphate by Automated Colourimetry	4	N/A	2021/10/04	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids (TDS calc)	8	N/A	2021/10/05		Auto Calc
Total Organic Carbon (TOC) (3)	4	N/A	2021/10/05	CAM SOP-00446	SM 23 5310B m
Total Phosphorus (Colourimetric)	4	2021/10/04	2021/10/05	CAM SOP-00407	SM 23 4500 P B H m
Turbidity	4	N/A	2021/10/01	CAM SOP-00417	SM 23 2130 B m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

Your Project #: LON-21008138 Site Location: HUNTER FARM Your C.O.C. #: 839959-01-01

Attention: Heather Jaggard

exp Services Inc London Branch 15701 Robin's Hill Rd Unit 2 London, ON CANADA N5V 0A5

Report Date: 2021/10/08

Report #: R6845736 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1S2764

Received: 2021/09/29, 08:30

- (2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.
- (3) Total Organic Carbon (TOC) present in the sample should be considered as non-purgeable TOC.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Bureau Veritas

Christine Gripton, Senior Project Manager Email: Christine.Gripton@bureauveritas.com

Phone# (519)652-9444

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages: 3 Page 3 of 24

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

RCAP - COMPREHENSIVE (LAB FILTERED)

BV Labs ID		QUK162		QUK163	QUK164	QUK165			
Samulina Data		2021/09/28		2021/09/28	2021/09/28	2021/09/28			
Sampling Date		13:00		16:00	16:05	16:30			
	UNITS	BH3/MW	QC Batch	BH7A/MW	BH7B/MW	BH9/MW	RDL	QC Batch	
Calculated Parameters									
Anion Sum	me/L	7.37	7610019	4.23	9.63	3.38	N/A	7610019	
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	280	7610010	140	400	130	1.0	7610010	
Calculated TDS	mg/L	390	7610017	230	510	180	1.0	7610017	
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.6	7610010	1.1	3.4	1.4	1.0	7610010	
Cation Sum	me/L	7.83	7610019	4.29	10.3	3.40	N/A	7610019	
Hardness (CaCO3)	mg/L	330	7610016	180	490	140	1.0	7610016	
Ion Balance (% Difference)	%	3.05	7610018	0.630	3.31	0.310	N/A	7610018	
Langelier Index (@ 20C)	N/A	0.974	7610013	0.386	1.25	0.408		7610013	
Langelier Index (@ 4C)	N/A	0.726	7610014	0.137	1.00	0.158		7610014	
Saturation pH (@ 20C)	N/A	7.02	7610013	7.52	6.70	7.63		7610013	
Saturation pH (@ 4C)	N/A	7.27	7610014	7.77	6.95	7.88		7610014	
Inorganics									
Total Ammonia-N	mg/L	<0.050	7616218	<0.050	0.097	<0.050	0.050	7616218	
Conductivity	umho/cm	690	7613005	410	840	320	1.0	7613005	
Dissolved Organic Carbon	mg/L	3.7	7617408	4.8	10	4.1	0.40	7616559	
Orthophosphate (P)	mg/L	<0.010	7613566	<0.010	<0.010	<0.010	0.010	7613566	
рН	рН	8.00	7613008	7.91	7.95	8.04		7613008	
Dissolved Sulphate (SO4)	mg/L	27	7613565	37	39	18	1.0	7613565	
Alkalinity (Total as CaCO3)	mg/L	290	7612994	140	410	130	1.0	7612994	
Dissolved Chloride (Cl-)	mg/L	38	7613553	18	24	9.0	1.0	7613553	
Nitrite (N)	mg/L	<0.010	7613663	0.026	0.055	0.015	0.010	7613663	
Nitrate (N)	mg/L	0.11	7613663	1.08	0.26	0.54	0.10	7613663	
Nitrate + Nitrite (N)	mg/L	0.11	7613663	1.11	0.31	0.56	0.10	7613663	
Metals	•	•	•	•		•	•	•	
Dissolved Aluminum (AI)	ug/L	<4.9	7614958	7.3	5.9	9.4	4.9	7614958	
Dissolved Antimony (Sb)	ug/L	<0.50	7614958	0.71	<0.50	0.51	0.50	7614958	
Dissolved Arsenic (As)	ug/L	5.4	7614958	1.0	<1.0	<1.0	1.0	7614958	
Dissolved Barium (Ba)	ug/L	79	7614958	32	72	17	2.0	7614958	
Dissolved Beryllium (Be)	ug/L	<0.40	7614958	<0.40	<0.40	<0.40	0.40	7614958	
Dissolved Boron (B)	ug/L	28	7614958	17	16	16	10	7614958	
Dissolved Cadmium (Cd)	ug/L	<0.090	7614958	<0.090	<0.090	<0.090	0.090	7614958	
RDL = Reportable Detection Limit	-	ı		ı		ı			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

RCAP - COMPREHENSIVE (LAB FILTERED)

BV Labs ID		QUK162		QUK163	QUK164	QUK165		
Sampling Date		2021/09/28		2021/09/28	2021/09/28	2021/09/28		
Sampling Date		13:00		16:00	16:05	16:30		
	UNITS	BH3/MW	QC Batch	BH7A/MW	BH7B/MW	BH9/MW	RDL	QC Batch
Dissolved Calcium (Ca)	ug/L	92000	7614958	53000	140000	42000	200	7614958
Dissolved Chromium (Cr)	ug/L	<5.0	7614958	<5.0	<5.0	<5.0	5.0	7614958
Dissolved Cobalt (Co)	ug/L	<0.50	7614958	<0.50	<0.50	<0.50	0.50	7614958
Dissolved Copper (Cu)	ug/L	17	7614958	23	21	11	0.90	7614958
Dissolved Iron (Fe)	ug/L	<100	7614958	<100	<100	<100	100	7614958
Dissolved Lead (Pb)	ug/L	<0.50	7614958	<0.50	<0.50	<0.50	0.50	7614958
Dissolved Magnesium (Mg)	ug/L	24000	7614958	12000	32000	8800	50	7614958
Dissolved Manganese (Mn)	ug/L	88	7614958	10	310	<2.0	2.0	7614958
Dissolved Molybdenum (Mo)	ug/L	12	7614958	5.3	4.2	4.9	0.50	7614958
Dissolved Nickel (Ni)	ug/L	13	7614958	8.7	8.6	4.7	1.0	7614958
Dissolved Phosphorus (P)	ug/L	<100	7614958	<100	<100	<100	100	7614958
Dissolved Potassium (K)	ug/L	2800	7614958	3500	3600	3100	200	7614958
Dissolved Selenium (Se)	ug/L	<2.0	7614958	<2.0	<2.0	<2.0	2.0	7614958
Dissolved Silicon (Si)	ug/L	4700	7614958	2000	6900	2500	50	7614958
Dissolved Silver (Ag)	ug/L	<0.090	7614958	<0.090	<0.090	<0.090	0.090	7614958
Dissolved Sodium (Na)	ug/L	27000	7614958	14000	7300	12000	100	7614958
Dissolved Strontium (Sr)	ug/L	180	7614958	180	200	120	1.0	7614958
Dissolved Thallium (TI)	ug/L	<0.050	7614958	<0.050	<0.050	<0.050	0.050	7614958
Dissolved Titanium (Ti)	ug/L	<5.0	7614958	<5.0	<5.0	<5.0	5.0	7614958
Dissolved Uranium (U)	ug/L	0.59	7614958	1.2	0.74	0.59	0.10	7614958
Dissolved Vanadium (V)	ug/L	<0.50	7614958	<0.50	0.58	<0.50	0.50	7614958
Dissolved Zinc (Zn)	ug/L	59	7614958	110	44	30	5.0	7614958

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

RCAP - SURFACE WATER (WATER)

BV Labs ID		QUK166			QUK167			QUK168		
Sampling Date		2021/09/28			2021/09/28			2021/09/28		
Jamping Bate		14:00			11:30			16:45		
	UNITS	SW1	RDL	QC Batch	SW2	RDL	QC Batch	SW4	RDL	QC Batch
Calculated Parameters										
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	390	1.0	7610010	250	1.0	7610010	70	1.0	7610010
Calculated TDS	mg/L	650	1.0	7610017	380	1.0	7610017	170	1.0	7610017
Carb. Alkalinity (calc. as CaCO3)	mg/L	3.5	1.0	7610010	3.6	1.0	7610010	<1.0	1.0	7610010
Hardness (CaCO3)	mg/L	400	1.0	7610015	310	1.0	7610016	130	1.0	7610015
Langelier Index (@ 20C)	N/A	1.18		7610013	1.13		7610013	-0.628		7610013
Langelier Index (@ 4C)	N/A	0.930		7610014	0.882		7610014	-0.878		7610014
Saturation pH (@ 20C)	N/A	6.80		7610013	7.06		7610013	7.94		7610013
Saturation pH (@ 4C)	N/A	7.05		7610014	7.31		7610014	8.19		7610014
Inorganics										
Total Ammonia-N	mg/L	0.082	0.050	7610470	<0.050	0.050	7616218	0.14	0.050	7616218
Conductivity	umho/cm	1200	1.0	7613005	640	1.0	7611593	280	1.0	7611684
Total Organic Carbon (TOC)	mg/L	41	0.40	7613672	8.9	0.40	7613672	17	0.40	7613672
Orthophosphate (P)	mg/L	0.012	0.010	7611563	0.026	0.010	7611563	0.40	0.010	7611563
рН	рН	7.98		7613008	8.19		7611646	7.32		7611688
Total Phosphorus	mg/L	1.9	0.1	7616206	0.043	0.004	7616206	0.46	0.02	7616206
Dissolved Sulphate (SO4)	mg/L	<1.0	1.0	7611557	36	1.0	7611557	47	1.0	7611557
Turbidity	NTU	9.3	0.1	7610722	1.1	0.1	7610722	2.5	0.1	7610722
Alkalinity (Total as CaCO3)	mg/L	390	1.0	7612994	250	1.0	7611647	70	1.0	7611678
Dissolved Chloride (Cl-)	mg/L	150	2.0	7611552	30	1.0	7611552	14	1.0	7611552
Nitrite (N)	mg/L	<0.010	0.010	7610949	0.031	0.010	7610949	0.039	0.010	7610949
Nitrate (N)	mg/L	<0.10	0.10	7610949	5.26	0.10	7610949	0.45	0.10	7610949
Metals										
Dissolved Calcium (Ca)	mg/L	130	0.05	7614963	95	0.05	7614963	38	0.05	7614094
Dissolved Magnesium (Mg)	mg/L	21	0.05	7614963	17	0.05	7614963	7.3	0.05	7614094
Dissolved Potassium (K)	mg/L	5	1	7614963	4	1	7614963	8	1	7614094
Dissolved Sodium (Na)	mg/L	89	0.5	7614963	12	0.5	7614963	2.5	0.5	7614094
Total Aluminum (AI)	ug/L	1300	4.9	7616141	67	4.9	7616141	140	4.9	7624000
Total Antimony (Sb)	ug/L	<0.50	0.50	7616141	<0.50	0.50	7616141	<0.50	0.50	7624000
Total Arsenic (As)	ug/L	7.3	1.0	7616141	<1.0	1.0	7616141	<1.0	1.0	7624000
Total Barium (Ba)	ug/L	160	2.0	7616141	41	2.0	7616141	8.5	2.0	7624000
Total Beryllium (Be)	ug/L	<0.40	0.40	7616141	<0.40	0.40	7616141	<0.40	0.40	7624000
Total Boron (B)	ug/L	43	10	7616141	22	10	7616141	44	10	7624000

QC Batch = Quality Control Batch

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

RCAP - SURFACE WATER (WATER)

BV Labs ID		QUK166			QUK167			QUK168		
Samuling Date		2021/09/28			2021/09/28			2021/09/28		
Sampling Date		14:00			11:30			16:45		
	UNITS	SW1	RDL	QC Batch	SW2	RDL	QC Batch	SW4	RDL	QC Batch
Total Cadmium (Cd)	ug/L	<0.090	0.090	7616141	<0.090	0.090	7616141	0.11	0.090	7624000
Total Calcium (Ca)	ug/L	160000	200	7616141	110000	200	7616141	41000	200	7624000
Total Chromium (Cr)	ug/L	<5.0	5.0	7616141	<5.0	5.0	7616141	<5.0	5.0	7624000
Total Cobalt (Co)	ug/L	2.3	0.50	7616141	<0.50	0.50	7616141	0.50	0.50	7624000
Total Copper (Cu)	ug/L	4.0	0.90	7616141	2.5	0.90	7616141	2.0	0.90	7624000
Total Iron (Fe)	ug/L	39000	100	7616141	130	100	7616141	230	100	7624000
Total Lead (Pb)	ug/L	2.0	0.50	7616141	<0.50	0.50	7616141	<0.50	0.50	7624000
Total Magnesium (Mg)	ug/L	24000	50	7616141	19000	50	7616141	7600	50	7624000
Total Manganese (Mn)	ug/L	1400	2.0	7616141	30	2.0	7616141	210	2.0	7624000
Total Molybdenum (Mo)	ug/L	0.82	0.50	7616141	1.3	0.50	7616141	1.3	0.50	7624000
Total Nickel (Ni)	ug/L	3.8	1.0	7616141	<1.0	1.0	7616141	<1.0	1.0	7624000
Total Potassium (K)	ug/L	5100	200	7616141	4000	200	7616141	7800	200	7624000
Total Selenium (Se)	ug/L	<2.0	2.0	7616141	<2.0	2.0	7616141	<2.0	2.0	7624000
Total Silicon (Si)	ug/L	9900	50	7616141	4300	50	7616141	1800	50	7624000
Total Silver (Ag)	ug/L	<0.090	0.090	7616141	<0.090	0.090	7616141	<0.090	0.090	7624000
Total Sodium (Na)	ug/L	93000	100	7616141	14000	100	7616141	1900	100	7624000
Total Strontium (Sr)	ug/L	280	1.0	7616141	190	1.0	7616141	44	1.0	7624000
Total Thallium (TI)	ug/L	<0.050	0.050	7616141	<0.050	0.050	7616141	<0.050	0.050	7624000
Total Titanium (Ti)	ug/L	48	5.0	7616141	5.6	5.0	7616141	7.3	5.0	7624000
Total Tungsten (W)	ug/L	<1.0	1.0	7616141	<1.0	1.0	7616141	<1.0	1.0	7624000
Total Uranium (U)	ug/L	1.4	0.10	7616141	2.4	0.10	7616141	0.10	0.10	7624000
Total Vanadium (V)	ug/L	3.4	0.50	7616141	0.87	0.50	7616141	0.79	0.50	7624000
Total Zinc (Zn)	ug/L	26	5.0	7616141	<5.0	5.0	7616141	5.4	5.0	7624000
Total Zirconium (Zr)	ug/L	<1.0	1.0	7616141	<1.0	1.0	7616141	<1.0	1.0	7624000

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

RCAP - SURFACE WATER (WATER)

		QUK169		
Sampling Date		2021/09/28		
		17:00		
	UNITS	SW5	RDL	QC Batch
Calculated Parameters				
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	120	1.0	7610010
Calculated TDS	mg/L	140	1.0	7610017
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	7610010
Hardness (CaCO3)	mg/L	130	1.0	7610016
Langelier Index (@ 20C)	N/A	0.150		7610013
Langelier Index (@ 4C)	N/A	-0.101		7610014
Saturation pH (@ 20C)	N/A	7.71		7610013
Saturation pH (@ 4C)	N/A	7.97		7610014
Inorganics			ı	
Total Ammonia-N	mg/L	0.093	0.050	7616218
Conductivity	umho/cm	260	1.0	7611593
Total Organic Carbon (TOC)	mg/L	24	0.40	7613672
Orthophosphate (P)	mg/L	0.082	0.010	7611563
рН	рН	7.86		761164
Total Phosphorus	mg/L	0.64	0.02	761620
Dissolved Sulphate (SO4)	mg/L	<1.0	1.0	761155
Turbidity	NTU	5.0	0.1	7610722
Alkalinity (Total as CaCO3)	mg/L	120	1.0	761164
Dissolved Chloride (Cl-)	mg/L	9.7	1.0	761155
Nitrite (N)	mg/L	<0.010	0.010	7610949
Nitrate (N)	mg/L	<0.10	0.10	7610949
Metals			ı	
Dissolved Calcium (Ca)	mg/L	37	0.05	7614094
Dissolved Magnesium (Mg)	mg/L	7.9	0.05	7614094
Dissolved Potassium (K)	mg/L	3	1	7614094
Dissolved Sodium (Na)	mg/L	3.4	0.5	7614094
Total Aluminum (Al)	ug/L	940	4.9	7616143
Total Antimony (Sb)	ug/L	<0.50	0.50	7616143
Total Arsenic (As)	ug/L	1.0	1.0	7616143
Total Barium (Ba)	ug/L	31	2.0	7616143
	ug/L	<0.40	0.40	7616143
Total Beryllium (Be)				

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

RCAP - SURFACE WATER (WATER)

BV Labs ID		QUK169		
Samulina Data		2021/09/28		
Sampling Date		17:00		
	UNITS	SW5	RDL	QC Batch
Total Cadmium (Cd)	ug/L	<0.090	0.090	7616141
Total Calcium (Ca)	ug/L	42000	200	7616141
Total Chromium (Cr)	ug/L	<5.0	5.0	7616141
Total Cobalt (Co)	ug/L	<0.50	0.50	7616141
Total Copper (Cu)	ug/L	2.2	0.90	7616141
Total Iron (Fe)	ug/L	1400	100	7616141
Total Lead (Pb)	ug/L	1.6	0.50	7616141
Total Magnesium (Mg)	ug/L	9000	50	7616141
Total Manganese (Mn)	ug/L	76	2.0	7616141
Total Molybdenum (Mo)	ug/L	1.2	0.50	7616141
Total Nickel (Ni)	ug/L	1.1	1.0	7616141
Total Potassium (K)	ug/L	3700	200	7616141
Total Selenium (Se)	ug/L	<2.0	2.0	7616141
Total Silicon (Si)	ug/L	3500	50	7616141
Total Silver (Ag)	ug/L	<0.090	0.090	7616141
Total Sodium (Na)	ug/L	3000	100	7616141
Total Strontium (Sr)	ug/L	57	1.0	7616141
Total Thallium (TI)	ug/L	<0.050	0.050	7616141
Total Titanium (Ti)	ug/L	24	5.0	7616141
Total Tungsten (W)	ug/L	<1.0	1.0	7616141
Total Uranium (U)	ug/L	0.44	0.10	7616141
Total Vanadium (V)	ug/L	2.3	0.50	7616141
Total Zinc (Zn)	ug/L	18	5.0	7616141
Total Zirconium (Zr)	ug/L	<1.0	1.0	7616141
RDL = Reportable Detection Lim	nit			

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		QUK166	QUK167	QUK168	QUK169		
Sampling Date		2021/09/28	2021/09/28	2021/09/28	2021/09/28		
Jamping Date		14:00	11:30	16:45	17:00		
	UNITS	SW1	SW2	SW4	SW5	RDL	QC Batch
Metals							
Dissolved Aluminum (AI)	ug/L	<4.9	9.4	24	11	4.9	7614958
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	7614958
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	7614958
Dissolved Barium (Ba)	ug/L	57	41	8.0	20	2.0	7614958
Dissolved Beryllium (Be)	ug/L	<0.40	<0.40	<0.40	<0.40	0.40	7614958
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	7614958
Dissolved Boron (B)	ug/L	34	21	44	22	10	7614958
Dissolved Cadmium (Cd)	ug/L	<0.090	<0.090	0.093	<0.090	0.090	7614958
Dissolved Calcium (Ca)	ug/L	140000	100000	39000	41000	200	7614958
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	7614958
Dissolved Cobalt (Co)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	7614958
Dissolved Copper (Cu)	ug/L	<0.90	1.9	1.7	<0.90	0.90	7614958
Dissolved Iron (Fe)	ug/L	<100	<100	110	150	100	7614958
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	7614958
Dissolved Lithium (Li)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	7614958
Dissolved Magnesium (Mg)	ug/L	25000	19000	7600	9000	50	7614958
Dissolved Manganese (Mn)	ug/L	18	20	200	<2.0	2.0	7614958
Dissolved Molybdenum (Mo)	ug/L	0.63	1.4	1.6	1.2	0.50	7614958
Dissolved Nickel (Ni)	ug/L	2.4	<1.0	<1.0	<1.0	1.0	7614958
Dissolved Phosphorus (P)	ug/L	<100	100	510	270	100	7614958
Dissolved Potassium (K)	ug/L	5100	4000	8200	3500	200	7614958
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	7614958
Dissolved Silicon (Si)	ug/L	7200	4300	1500	2500	50	7614958
Dissolved Silver (Ag)	ug/L	<0.090	<0.090	<0.090	<0.090	0.090	7614958
Dissolved Sodium (Na)	ug/L	98000	13000	1900	3000	100	7614958
Dissolved Strontium (Sr)	ug/L	260	190	45	54	1.0	7614958
Dissolved Tellurium (Te)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	7614958
Dissolved Thallium (TI)	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	7614958
Dissolved Tin (Sn)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	7614958
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	7614958
Dissolved Tungsten (W)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	7614958
Dissolved Uranium (U)	ug/L	1.4	2.3	0.10	0.29	0.10	7614958
RDL = Reportable Detection Li	mit						

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		QUK166	QUK167	QUK168	QUK169		
Sampling Date		2021/09/28	2021/09/28	2021/09/28	2021/09/28		
		14:00	11:30	16:45	17:00		
	UNITS	SW1	SW2	SW4	SW5	RDL	QC Batch
Dissolved Vanadium (V)	ug/L	<0.50	0.56	<0.50	0.91	0.50	7614958
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	7614958
Dissolved Zirconium (Zr)	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	7614958

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

TEST SUMMARY

BV Labs ID: QUK162 Sample ID: BH3/MW Matrix: Water **Collected:** 2021/09/28

Shipped:

Received: 2021/09/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7612994	N/A	2021/10/04	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7610010	N/A	2021/10/05	Automated Statchk
Chloride by Automated Colourimetry	KONE	7613553	N/A	2021/10/04	Alina Dobreanu
Conductivity	AT	7613005	N/A	2021/10/04	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7617408	N/A	2021/10/05	Julianna Castiglione
Hardness (calculated as CaCO3)		7610016	N/A	2021/10/04	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7614958	2021/10/02	2021/10/04	Prempal Bhatti
Ion Balance (% Difference)	CALC	7610018	N/A	2021/10/05	Automated Statchk
Anion and Cation Sum	CALC	7610019	N/A	2021/10/05	Automated Statchk
Total Ammonia-N	LACH/NH4	7616218	N/A	2021/10/04	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7613663	N/A	2021/10/04	Chandra Nandlal
рН	AT	7613008	2021/10/01	2021/10/04	Surinder Rai
Orthophosphate	KONE	7613566	N/A	2021/10/04	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7610013	N/A	2021/10/05	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7610014	N/A	2021/10/05	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7613565	N/A	2021/10/04	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7610017	N/A	2021/10/05	Automated Statchk

BV Labs ID: QUK163 Sample ID: BH7A/MW Matrix: Water

Collected: 2021/09/28

Shipped:

Received: 2021/09/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7612994	N/A	2021/10/04	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7610010	N/A	2021/10/05	Automated Statchk
Chloride by Automated Colourimetry	KONE	7613553	N/A	2021/10/04	Alina Dobreanu
Conductivity	AT	7613005	N/A	2021/10/04	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7616559	N/A	2021/10/05	Julianna Castiglione
Hardness (calculated as CaCO3)		7610016	N/A	2021/10/04	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7614958	2021/10/02	2021/10/04	Prempal Bhatti
Ion Balance (% Difference)	CALC	7610018	N/A	2021/10/05	Automated Statchk
Anion and Cation Sum	CALC	7610019	N/A	2021/10/05	Automated Statchk
Total Ammonia-N	LACH/NH4	7616218	N/A	2021/10/04	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7613663	N/A	2021/10/04	Chandra Nandlal
РН	AT	7613008	2021/10/01	2021/10/04	Surinder Rai
Orthophosphate	KONE	7613566	N/A	2021/10/04	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7610013	N/A	2021/10/05	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7610014	N/A	2021/10/05	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7613565	N/A	2021/10/04	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7610017	N/A	2021/10/05	Automated Statchk

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

TEST SUMMARY

BV Labs ID: QUK164 Sample ID: BH7B/MW Matrix: Water

Collected: 2021/09/28

Shipped:

Received: 2021/09/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7612994	N/A	2021/10/04	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7610010	N/A	2021/10/05	Automated Statchk
Chloride by Automated Colourimetry	KONE	7613553	N/A	2021/10/04	Alina Dobreanu
Conductivity	AT	7613005	N/A	2021/10/04	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7616559	N/A	2021/10/04	Julianna Castiglione
Hardness (calculated as CaCO3)		7610016	N/A	2021/10/04	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7614958	2021/10/02	2021/10/04	Prempal Bhatti
Ion Balance (% Difference)	CALC	7610018	N/A	2021/10/05	Automated Statchk
Anion and Cation Sum	CALC	7610019	N/A	2021/10/05	Automated Statchk
Total Ammonia-N	LACH/NH4	7616218	N/A	2021/10/04	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7613663	N/A	2021/10/04	Chandra Nandlal
рН	AT	7613008	2021/10/01	2021/10/04	Surinder Rai
Orthophosphate	KONE	7613566	N/A	2021/10/04	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7610013	N/A	2021/10/05	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7610014	N/A	2021/10/05	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7613565	N/A	2021/10/04	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7610017	N/A	2021/10/05	Automated Statchk

BV Labs ID: QUK165 Sample ID: BH9/MW Matrix: Water

Collected: 2021/09/28

Shipped:

Received: 2021/09/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7612994	N/A	2021/10/04	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7610010	N/A	2021/10/05	Automated Statchk
Chloride by Automated Colourimetry	KONE	7613553	N/A	2021/10/04	Alina Dobreanu
Conductivity	AT	7613005	N/A	2021/10/04	Surinder Rai
Dissolved Organic Carbon (DOC)	TOCV/NDIR	7616559	N/A	2021/10/05	Julianna Castiglione
Hardness (calculated as CaCO3)		7610016	N/A	2021/10/04	Automated Statchk
Lab Filtered Metals by ICPMS	ICP/MS	7614958	2021/10/02	2021/10/04	Prempal Bhatti
Ion Balance (% Difference)	CALC	7610018	N/A	2021/10/05	Automated Statchk
Anion and Cation Sum	CALC	7610019	N/A	2021/10/05	Automated Statchk
Total Ammonia-N	LACH/NH4	7616218	N/A	2021/10/04	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7613663	N/A	2021/10/04	Chandra Nandlal
рН	AT	7613008	2021/10/01	2021/10/04	Surinder Rai
Orthophosphate	KONE	7613566	N/A	2021/10/04	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7610013	N/A	2021/10/05	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7610014	N/A	2021/10/05	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7613565	N/A	2021/10/04	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7610017	N/A	2021/10/05	Automated Statchk

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

TEST SUMMARY

BV Labs ID: QUK165 Dup Sample ID: BH9/MW

Matrix: Water

Collected: 2021/09/28

Shipped:

Received: 2021/09/29

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst Lab Filtered Metals by ICPMS ICP/MS 7614958 2021/10/02 2021/10/04 Prempal Bhatti

BV Labs ID: QUK166 Sample ID: SW1

Water

Matrix:

Collected: 2021/09/28

Shipped:

2021/09/29 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7612994	N/A	2021/10/04	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7610010	N/A	2021/10/05	Automated Statchk
Chloride by Automated Colourimetry	KONE	7611552	N/A	2021/10/01	Alina Dobreanu
Conductivity	AT	7613005	N/A	2021/10/04	Surinder Rai
Hardness (calculated as CaCO3)		7610015	N/A	2021/10/05	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	7614963	2021/10/02	2021/10/04	Meghaben Patel
Lab Filtered Metals by ICPMS	ICP/MS	7614958	2021/10/02	2021/10/04	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	7616141	N/A	2021/10/05	Nan Raykha
Total Ammonia-N	LACH/NH4	7610470	N/A	2021/10/01	Viorica Rotaru
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7610949	N/A	2021/10/01	Chandra Nandlal
рН	AT	7613008	2021/10/01	2021/10/04	Surinder Rai
Orthophosphate	KONE	7611563	N/A	2021/10/01	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7610013	N/A	2021/10/05	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7610014	N/A	2021/10/05	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7611557	N/A	2021/10/01	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7610017	N/A	2021/10/05	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	7613672	N/A	2021/10/05	Julianna Castiglione
Total Phosphorus (Colourimetric)	LACH/P	7616206	2021/10/04	2021/10/05	Shivani Shivani
Turbidity	AT	7610722	N/A	2021/10/01	Neil Dassanayake

BV Labs ID: QUK166 Dup Sample ID: SW1 Matrix: Water

Collected: 2021/09/28

Shipped:

Received: 2021/09/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7612994	N/A	2021/10/04	Surinder Rai
Conductivity	AT	7613005	N/A	2021/10/04	Surinder Rai
Lab Filtered Metals Analysis by ICP	ICP	7614963	2021/10/02	2021/10/04	Meghaben Patel
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7610949	N/A	2021/10/01	Chandra Nandlal
рН	AT	7613008	2021/10/01	2021/10/04	Surinder Rai

BV Labs ID: QUK167 Sample ID: SW2 Matrix: Water

Collected: 2021/09/28 Shipped:

Received:

2021/09/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7611647	N/A	2021/10/01	Surinder Rai

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

TEST SUMMARY

BV Labs ID: QUK167 Sample ID: SW2

Collected: 2021/09/28 Shipped:

Matrix: Water

Received: 2021/09/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	7610010	N/A	2021/10/04	Automated Statchk
Chloride by Automated Colourimetry	KONE	7611552	N/A	2021/10/01	Alina Dobreanu
Conductivity	AT	7611593	N/A	2021/10/01	Surinder Rai
Hardness (calculated as CaCO3)		7610016	N/A	2021/10/05	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	7614963	2021/10/02	2021/10/04	Meghaben Patel
Lab Filtered Metals by ICPMS	ICP/MS	7614958	2021/10/02	2021/10/04	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	7616141	N/A	2021/10/05	Nan Raykha
Total Ammonia-N	LACH/NH4	7616218	N/A	2021/10/04	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7610949	N/A	2021/10/01	Chandra Nandlal
рН	AT	7611646	2021/09/30	2021/10/01	Surinder Rai
Orthophosphate	KONE	7611563	N/A	2021/10/01	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7610013	N/A	2021/10/05	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7610014	N/A	2021/10/05	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7611557	N/A	2021/10/01	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7610017	N/A	2021/10/05	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	7613672	N/A	2021/10/05	Julianna Castiglione
Total Phosphorus (Colourimetric)	LACH/P	7616206	2021/10/04	2021/10/05	Shivani Shivani
Turbidity	AT	7610722	N/A	2021/10/01	Neil Dassanayake

BV Labs ID: QUK167 Dup Sample ID: SW2 Matrix: Water

Collected: 2021/09/28

Shipped:

Received: 2021/09/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Turbidity	AT	7610722	N/A	2021/10/01	Neil Dassanayake

BV Labs ID: QUK168

Test Description

Collected: Shipped:

2021/09/28

Sample ID: SW4 Matrix: Water

Received: 2021/09/29 Instrumentation Ratch Extracted Date Analyzed Analyst

rest Description	instrumentation	Datch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7611678	N/A	2021/10/01	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7610010	N/A	2021/10/01	Automated Statchk
Chloride by Automated Colourimetry	KONE	7611552	N/A	2021/10/01	Alina Dobreanu
Conductivity	AT	7611684	N/A	2021/10/01	Surinder Rai
Hardness (calculated as CaCO3)		7610015	N/A	2021/10/05	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	7614094	2021/10/02	2021/10/04	Meghaben Patel
Lab Filtered Metals by ICPMS	ICP/MS	7614958	2021/10/02	2021/10/04	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	7624000	N/A	2021/10/08	Arefa Dabhad
Total Ammonia-N	LACH/NH4	7616218	N/A	2021/10/04	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7610949	N/A	2021/10/01	Chandra Nandlal
рН	AT	7611688	2021/09/30	2021/10/01	Surinder Rai
Orthophosphate	KONE	7611563	N/A	2021/10/01	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7610013	N/A	2021/10/05	Automated Statchk

Client Project #: LON-21008138
Site Location: HUNTER FARM

Sampler Initials: JM

TEST SUMMARY

BV Labs ID: QUK168 Sample ID: SW4 Matrix: Water **Collected:** 2021/09/28

Shipped:

Received: 2021/09/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sat. pH and Langelier Index (@ 4C)	CALC	7610014	N/A	2021/10/05	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7611557	N/A	2021/10/01	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7610017	N/A	2021/10/05	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	7613672	N/A	2021/10/05	Julianna Castiglione
Total Phosphorus (Colourimetric)	LACH/P	7616206	2021/10/04	2021/10/05	Shivani Shivani
Turbidity	AT	7610722	N/A	2021/10/01	Neil Dassanayake

BV Labs ID: QUK168 Dup **Sample ID:** SW4

Matrix: Water

Collected: 2021/09/28

Shipped:

Received: 2021/09/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7611678	N/A	2021/10/01	Surinder Rai
Conductivity	AT	7611684	N/A	2021/10/01	Surinder Rai
pH	AT	7611688	2021/09/30	2021/10/01	Surinder Rai

BV Labs ID: QUK169 Sample ID: SW5 Matrix: Water **Collected:** 2021/09/28

Shipped:

Received: 2021/09/29

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	7611647	N/A	2021/10/01	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	7610010	N/A	2021/10/04	Automated Statchk
Chloride by Automated Colourimetry	KONE	7611552	N/A	2021/10/01	Alina Dobreanu
Conductivity	AT	7611593	N/A	2021/10/01	Surinder Rai
Hardness (calculated as CaCO3)		7610016	N/A	2021/10/05	Automated Statchk
Lab Filtered Metals Analysis by ICP	ICP	7614094	2021/10/02	2021/10/04	Meghaben Patel
Lab Filtered Metals by ICPMS	ICP/MS	7614958	2021/10/02	2021/10/04	Prempal Bhatti
Total Metals Analysis by ICPMS	ICP/MS	7616141	N/A	2021/10/05	Nan Raykha
Total Ammonia-N	LACH/NH4	7616218	N/A	2021/10/04	Amanpreet Sappal
Nitrate (NO3) and Nitrite (NO2) in Water	LACH	7610949	N/A	2021/10/01	Chandra Nandlal
рН	AT	7611646	2021/09/30	2021/10/01	Surinder Rai
Orthophosphate	KONE	7611563	N/A	2021/10/01	Avneet Kour Sudan
Sat. pH and Langelier Index (@ 20C)	CALC	7610013	N/A	2021/10/05	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	7610014	N/A	2021/10/05	Automated Statchk
Sulphate by Automated Colourimetry	KONE	7611557	N/A	2021/10/01	Avneet Kour Sudan
Total Dissolved Solids (TDS calc)	CALC	7610017	N/A	2021/10/05	Automated Statchk
Total Organic Carbon (TOC)	TOCV/NDIR	7613672	N/A	2021/10/05	Julianna Castiglione
Total Phosphorus (Colourimetric)	LACH/P	7616206	2021/10/04	2021/10/05	Shivani Shivani
Turbidity	AT	7610722	N/A	2021/10/01	Neil Dassanayake

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	1.0°C
Package 2	2.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: LON-21008138 Site Location: HUNTER FARM Sampler Initials: JM

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	Blank	RPD		QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery QC Limits	QC Limits
7610470	Total Ammonia-N	2021/10/01	99	75 - 125	66	80 - 120	<0.050	mg/L	NC	20		
7610722	Turbidity	2021/10/01			96	85 - 115	<0.1	NTU	6.9	20		
7610949	Nitrate (N)	2021/10/01	86	80 - 120	76	80 - 120	<0.10	mg/L	NC	20		
7610949	Nitrite (N)	2021/10/01	66	80 - 120	104	80 - 120	<0.010	mg/L	NC	70		
7611552	Dissolved Chloride (CI-)	2021/10/01	NC	80 - 120	105	80 - 120	<1.0	mg/L	1.5	20		
7611557	Dissolved Sulphate (SO4)	2021/10/01	101	75 - 125	104	80 - 120	<1.0	mg/L	0.41	20		
7611563	Orthophosphate (P)	2021/10/01	112	75 - 125	100	80 - 120	<0.010	mg/L	NC	25		
7611593	Conductivity	2021/10/01			66	85 - 115	<1.0	umho/c m	0.62	25		
7611646	Н	2021/10/01			102	98 - 103			0.95	W/A		
7611647	Alkalinity (Total as CaCO3)	2021/10/01			96	85 - 115	<1.0	mg/L	0.40	20		
7611678	Alkalinity (Total as CaCO3)	2021/10/01			26	85 - 115	<1.0	mg/L	1.0	20		
7611684	Conductivity	2021/10/01			101	85 - 115	<1.0	umho/c m	1.8	25		
7611688	рн	2021/10/01			102	98 - 103			0.11	N/A		
7612994	Alkalinity (Total as CaCO3)	2021/10/04			92	85 - 115	<1.0	mg/L	1.3	20		
7613005	Conductivity	2021/10/04			101	85 - 115	<1.0	umho/c m	0.084	25		
7613008	рн	2021/10/04			102	98 - 103			2.4	N/A		
7613553	Dissolved Chloride (CI-)	2021/10/04	NC	80 - 120	102	80 - 120	<1.0	mg/L	9.9	20		
7613565	Dissolved Sulphate (SO4)	2021/10/04	95	75 - 125	101	80 - 120	<1.0	mg/L	0.58	20		
7613566	Orthophosphate (P)	2021/10/04	114	75 - 125	66	80 - 120	<0.010	mg/L	NC	25		
7613663	Nitrate (N)	2021/10/04	101	80 - 120	106	80 - 120	<0.10	mg/L	NC	20		
7613663	Nitrite (N)	2021/10/04	101	80 - 120	103	80 - 120	<0.010	mg/L	NC	20		
7613672	Total Organic Carbon (TOC)	2021/10/05	101	80 - 120	96	80 - 120	<0.40	mg/L	0.17	20		
7614094	Dissolved Calcium (Ca)	2021/10/05	NC	80 - 120	66	80 - 120	<0.05	mg/L	1.5	25		
7614094	Dissolved Magnesium (Mg)	2021/10/05	113	80 - 120	97	80 - 120	<0.05	mg/L	1.3	25		
7614094	Dissolved Potassium (K)	2021/10/05	106	80 - 120	66	80 - 120	<1	mg/L	1.1	25		
7614094	Dissolved Sodium (Na)	2021/10/05	NC	80 - 120	86	80 - 120	<0.5	mg/L	0.16	25		
7614958	Dissolved Aluminum (AI)	2021/10/04	101	80 - 120	107	80 - 120	<4.9	ng/L	14	20		
7614958	Dissolved Antimony (Sb)	2021/10/04	106	80 - 120	106	80 - 120	<0.50	ng/L	1.2	20		

Page 18 of 24

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

exp Services Inc Client Project #: LON-21008138

Site Location: HUNTER FARM Sampler Initials: JM

			Matrix Snike	Snike	SPIKED BI ANK	BI ANK	Method Blank	Slank	RPD		OC Standard	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery QC Limits	QC Limits
7614958	Dissolved Arsenic (As)	2021/10/04	101	80 - 120	100	80 - 120	<1.0	ng/L	NC	20		
7614958	Dissolved Barium (Ba)	2021/10/04	104	80 - 120	104	80 - 120	<2.0	1/8n	8.9	70		
7614958	Dissolved Beryllium (Be)	2021/10/04	100	80 - 120	66	80 - 120	<0.40	ng/L	NC	20		
7614958	Dissolved Bismuth (Bi)	2021/10/04	101	80 - 120	103	80 - 120	<1.0	ng/L				
7614958	Dissolved Boron (B)	2021/10/04	86	80 - 120	96	80 - 120	<10	ng/L	0.47	20		
7614958	Dissolved Cadmium (Cd)	2021/10/04	103	80 - 120	103	80 - 120	<0.090	ng/L	NC	20		
7614958	Dissolved Calcium (Ca)	2021/10/04	96	80 - 120	104	80 - 120	<200	ng/L	0.15	20		
7614958	Dissolved Chromium (Cr)	2021/10/04	100	80 - 120	100	80 - 120	<5.0	ng/L	NC	20		
7614958	Dissolved Cobalt (Co)	2021/10/04	103	80 - 120	66	80 - 120	<0.50	1/8n	NC	70		
7614958	Dissolved Copper (Cu)	2021/10/04	86	80 - 120	86	80 - 120	<0.90	ng/L	2.3	20		
7614958	Dissolved Iron (Fe)	2021/10/04	102	80 - 120	102	80 - 120	<100	ng/L	NC	20		
7614958	Dissolved Lead (Pb)	2021/10/04	96	80 - 120	100	80 - 120	<0.50	ng/L	NC	20		
7614958	Dissolved Lithium (Li)	2021/10/04	106	80 - 120	108	80 - 120	<5.0	ng/L				
7614958	Dissolved Magnesium (Mg)	2021/10/04	101	80 - 120	102	80 - 120	<50	ng/L	1.4	20		
7614958	Dissolved Manganese (Mn)	2021/10/04	104	80 - 120	104	80 - 120	<2.0	ng/L	NC	20		
7614958	Dissolved Molybdenum (Mo)	2021/10/04	104	80 - 120	103	80 - 120	<0.50	ng/L	1.1	20		
7614958	Dissolved Nickel (Ni)	2021/10/04	86	80 - 120	98	80 - 120	<1.0	ng/L	11	20		
7614958	Dissolved Phosphorus (P)	2021/10/04	105	80 - 120	116	80 - 120	<100	ng/L	NC	20		
7614958	Dissolved Potassium (K)	2021/10/04	104	80 - 120	105	80 - 120	<200	ng/L	0.67	20		
7614958	Dissolved Selenium (Se)	2021/10/04	6	80 - 120	101	80 - 120	<2.0	ng/L	NC	20		
7614958	Dissolved Silicon (Si)	2021/10/04	100	80 - 120	104	80 - 120	<50	ng/L	0.55	20		
7614958	Dissolved Silver (Ag)	2021/10/04	101	80 - 120	102	80 - 120	<0.090	ng/L	NC	20		
7614958	Dissolved Sodium (Na)	2021/10/04	6	80 - 120	101	80 - 120	<100	ng/L	2.2	20		
7614958	Dissolved Strontium (Sr)	2021/10/04	103	80 - 120	101	80 - 120	<1.0	ng/L	0.83	20		
7614958	Dissolved Tellurium (Te)	2021/10/04	107	80 - 120	103	80 - 120	<1.0	ng/L				
7614958	Dissolved Thallium (TI)	2021/10/04	99	80 - 120	100	80 - 120	<0.050	ng/L	NC	20		
7614958	Dissolved Tin (Sn)	2021/10/04	105	80 - 120	105	80 - 120	<1.0	ng/L				
7614958	Dissolved Titanium (Ti)	2021/10/04	66	80 - 120	102	80 - 120	<5.0	ng/L	NC	20		
7614958	Dissolved Tungsten (W)	2021/10/04	100	80 - 120	98	80 - 120	<1.0	ng/L				
7614958	Dissolved Uranium (U)	2021/10/04	66	80 - 120	100	80 - 120	<0.10	ng/L	4.5	20		
7614958	Dissolved Vanadium (V)	2021/10/04	102	80 - 120	101	80 - 120	<0.50	ng/L	NC	20		

Page 19 of 24

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

exp Services Inc Client Project #: LON-21008138 Site Location: HUNTER FARM Sampler Initials: JM

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	Slank	RPD	0	QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7614958	Dissolved Zinc (Zn)	2021/10/04	101	80 - 120	101	80 - 120	<5.0	1/Bn	1.9	20		
7614958	Dissolved Zirconium (Zr)	2021/10/04	111	80 - 120	110	80 - 120	<1.0	1/Bn				
7614963	Dissolved Calcium (Ca)	2021/10/04	26	80 - 120	100	80 - 120	0.05, RDL=0.05	mg/L	0.79	25		
7614963	Dissolved Magnesium (Mg)	2021/10/04	86	80 - 120	66	80 - 120	<0.05	mg/L	0.94	25		
7614963	Dissolved Potassium (K)	2021/10/04	66	80 - 120	100	80 - 120	<1	mg/L	1.1	25		
7614963	Dissolved Sodium (Na)	2021/10/04	86	80 - 120	66	80 - 120	<0.5	mg/L	0.79	25		
7616141	Total Aluminum (AI)	2021/10/05	104	80 - 120	105	80 - 120	<4.9	ng/L	3.7	20		
7616141	Total Antimony (Sb)	2021/10/05	108	80 - 120	103	80 - 120	<0.50	ng/L	6.3	20		
7616141	Total Arsenic (As)	2021/10/05	105	80 - 120	102	80 - 120	<1.0	1/Bn	0.52	20		
7616141	Total Barium (Ba)	2021/10/05	103	80 - 120	103	80 - 120	<2.0	T/Bn	0.42	20		
7616141	Total Beryllium (Be)	2021/10/05	105	80 - 120	100	80 - 120	<0.40	7/Bn	NC	20		
7616141	Total Boron (B)	2021/10/05	100	80 - 120	6	80 - 120	<10	ng/L	1.4	20		
7616141	Total Cadmium (Cd)	2021/10/05	103	80 - 120	100	80 - 120	<0.090	ng/L	NC	20		
7616141	Total Calcium (Ca)	2021/10/05	96	80 - 120	101	80 - 120	<200	ng/L	0.18	20		
7616141	Total Chromium (Cr)	2021/10/05	103	80 - 120	101	80 - 120	<5.0	ng/L	NC	20		
7616141	Total Cobalt (Co)	2021/10/05	105	80 - 120	102	80 - 120	<0.50	ng/L	NC	20		
7616141	Total Copper (Cu)	2021/10/05	108	80 - 120	108	80 - 120	<0.90	ng/L	NC	20		
7616141	Total Iron (Fe)	2021/10/05	102	80 - 120	100	80 - 120	<100	ng/L	12	20		
7616141	Total Lead (Pb)	2021/10/05	97	80 - 120	94	80 - 120	<0.50	ng/L	NC	20		
7616141	Total Magnesium (Mg)	2021/10/05	101	80 - 120	104	80 - 120	<50	ng/L	4.3	20		
7616141	Total Manganese (Mn)	2021/10/05	103	80 - 120	102	80 - 120	<2.0	ng/L	0.16	20		
7616141	Total Molybdenum (Mo)	2021/10/05	106	80 - 120	103	80 - 120	<0.50	ng/L	8.5	20		
7616141	Total Nickel (Ni)	2021/10/05	100	80 - 120	100	80 - 120	<1.0	ng/L	NC	20		
7616141	Total Potassium (K)	2021/10/05	104	80 - 120	105	80 - 120	<200	ng/L	1.1	20		
7616141	Total Selenium (Se)	2021/10/05	105	80 - 120	107	80 - 120	<2.0	ng/L	NC	20		
7616141	Total Silicon (Si)	2021/10/05	100	80 - 120	101	80 - 120	<50	ng/L	3.4	20		
7616141	Total Silver (Ag)	2021/10/05	103	80 - 120	102	80 - 120	<0.090	ng/L	NC	20		
7616141	Total Sodium (Na)	2021/10/05	105	80 - 120	102	80 - 120	<100	ng/L	5.2	20		
7616141	Total Strontium (Sr)	2021/10/05	97	80 - 120	96	80 - 120	<1.0	ng/L	1.8	20		
7616141	Total Thallium (TI)	2021/10/05	97	80 - 120	92	80 - 120	<0.050	ng/L	NC	20		

Page 20 of 24

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

exp Services Inc Client Project #: LON-21008138

Site Location: HUNTER FARM Sampler Initials: JM

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	Blank	RPD	٥	QC Sta	QC Standard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7616141	Total Titanium (Ti)	2021/10/05	86	80 - 120	100	80 - 120	<5.0	1/8n	NC	20		
7616141	Total Tungsten (W)	2021/10/05	109	80 - 120	103	80 - 120	<1.0	ng/L	NC	20		
7616141	Total Uranium (U)	2021/10/05	92	80 - 120	90	80 - 120	<0.10	ng/L	0.88	20		
7616141	Total Vanadium (V)	2021/10/05	106	80 - 120	102	80 - 120	<0.50	ng/L	12	20		
7616141	Total Zinc (Zn)	2021/10/05	104	80 - 120	105	80 - 120	<5.0	1/8n	3.1	20		
7616141	Total Zirconium (Zr)	2021/10/05	111	80 - 120	104	80 - 120	<1.0	1/8n	NC	20		
7616206	Total Phosphorus	2021/10/05	101	80 - 120	105	80 - 120	<0.004	T/Bm	NC	20	06	80 - 120
7616218	Total Ammonia-N	2021/10/04	100	75 - 125	100	80 - 120	<0.050	mg/L	NC	20		
7616559	Dissolved Organic Carbon	2021/10/04	92	80 - 120	26	80 - 120	<0.40	mg/L	0.040	20		
7617408	Dissolved Organic Carbon	2021/10/05	101	80 - 120	86	80 - 120	<0.40	mg/L	2.8	20		
7624000	Total Aluminum (AI)	2021/10/08	68	80 - 120	103	80 - 120	<4.9	ng/L				
7624000	Total Antimony (Sb)	2021/10/08	94	80 - 120	105	80 - 120	<0.50	ng/L				
7624000	Total Arsenic (As)	2021/10/08	68	80 - 120	101	80 - 120	<1.0	1/8n				
7624000	Total Barium (Ba)	2021/10/08	87	80 - 120	66	80 - 120	<2.0	1/8n				
7624000	Total Beryllium (Be)	2021/10/08	88	80 - 120	66	80 - 120	<0.40	T/Bn				
7624000	Total Boron (B)	2021/10/08	66 (1)	80 - 120	06	80 - 120	<10	1/8n				
7624000	Total Cadmium (Cd)	2021/10/08	90	80 - 120	102	80 - 120	<0.090	ng/L	NC	20		
7624000	Total Calcium (Ca)	2021/10/08	67 (1)	80 - 120	105	80 - 120	<200	1/8n				
7624000	Total Chromium (Cr)	2021/10/08	85	80 - 120	97	80 - 120	<5.0	ng/L	NC	20		
7624000	Total Cobalt (Co)	2021/10/08	88	80 - 120	100	80 - 120	<0.50	ng/L				
7624000	Total Copper (Cu)	2021/10/08	87	80 - 120	98	80 - 120	<0.90	ng/L	NC	20		
7624000	Total Iron (Fe)	2021/10/08	88	80 - 120	66	80 - 120	<100	ng/L				
7624000	Total Lead (Pb)	2021/10/08	88	80 - 120	102	80 - 120	<0.50	ng/L	NC	20		
7624000	Total Magnesium (Mg)	2021/10/08	82	80 - 120	101	80 - 120	<50	ng/L				
7624000	Total Manganese (Mn)	2021/10/08	82	80 - 120	98	80 - 120	<2.0	ng/L				
7624000	Total Molybdenum (Mo)	2021/10/08	86	80 - 120	96	80 - 120	<0.50	ng/L				
7624000	Total Nickel (Ni)	2021/10/08	87	80 - 120	96	80 - 120	<1.0	ng/L	15	20		
7624000	Total Potassium (K)	2021/10/08	86	80 - 120	66	80 - 120	<200	ng/L				
7624000	Total Selenium (Se)	2021/10/08	91	80 - 120	107	80 - 120	<2.0	ng/L				
7624000	Total Silicon (Si)	2021/10/08	89	80 - 120	102	80 - 120	<50	ng/L				
7624000	Total Silver (Ag)	2021/10/08	68	80 - 120	66	80 - 120	<0.090	T/Bn				

Page 21 of 24

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 218 Tel: (905) 817-5770 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

exp Services Inc

Sampler Initials: JM

Client Project #: LON-21008138 Site Location: HUNTER FARM

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	3lank	RPD	D	QC Standard	dard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	QC Limits % Recovery QC Limits	C Limits
7624000	Total Sodium (Na)	2021/10/08	59 (1)	80 - 120	101	80 - 120	<100	1/8n				
7624000	Total Strontium (Sr)	2021/10/08	64 (1)	80 - 120	86	80 - 120	<1.0	1/8n				
7624000	7624000 Total Thallium (TI)	2021/10/08	06	80 - 120	101	80 - 120	<0.050	1/8n				
7624000	Total Titanium (Ti)	2021/10/08	85	80 - 120	100	80 - 120	<5.0	1/8n				
7624000	Total Tungsten (W)	2021/10/08	88	80 - 120	901	80 - 120	<1.0	1/8n				
7624000	Total Uranium (U)	2021/10/08	68	80 - 120	101	80 - 120	<0.10	1/8n				
7624000	Total Vanadium (V)	2021/10/08	88	80 - 120	66	80 - 120	<0.50	1/8n				
7624000	Total Zinc (Zn)	2021/10/08	06	80 - 120	103	80 - 120	<5.0	1/8n	NC	20		
7624000	7624000 Total Zirconium (Zr)	2021/10/08	93	80 - 120	102	80 - 120	<1.0	ng/L				

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Report Date: 2021/10/08

exp Services Inc

Client Project #: LON-21008138 Site Location: HUNTER FARM

Sampler Initials: JM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Appendix K – Water Balance Assessment

TABLE K1 - PRE-DEVELOPMENT WATER BALANCE CALCULATIONS

AREA A - Drains to the Sandusky Drain	Impervious Area (m²)	Pervious Area (m²)	Total Area (m²)	Soil Type	Soil Group		ding Capacity mm)	Infiltration Factor	T _{rain} (°C)	T _{snow} (°C)	Meltmax (%/100)		
Agricultural Land	0	111,551	190,407	Sandy Loam	В		150	0.6	3.3	-10.0	0.92		
Pasture and Shrubs	0	68,966		Sand	Α		100	0.8					
Mature Forest	0	2,090		Sandy Loam	В	:	300	0.8					
Richmond Street	5,460	2,340		Sandy Loam	В		75	0.6					
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	Totals
Average Temperature (°C)	-5.6	-4.5	-0.1	6.8	13.1	18.3	20.8	19.7	15.5	9.2	3.4	-2.6	
Total Precipitation (mm/month)	74.2	65.5	71.5	83.4	89.8	91.7	82.7	82.9	103.0	81.3	98.0	87.5	1011.5
Precipitation as rain (mm/month)	24.5	27.1	53.2	83.4	89.8	91.7	82.7	82.9	103.0	81.3	98.0	48.7	
Precipitation as snow (mm/month)	49.7	38.4	18.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	38.8	
Potential Snow Melt (mm/month)	20.9	32.8	49.1	26.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.9	
Actual Snow Melt (mm/month)	20.9	32.8	49.1	22.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.9	
Snow Storage (mm/month)	47.7	53.4	22.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.9	
Agricultural Land													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	115.6	90.5	56.3	30.5	16.0	10.0	570.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-32.9	-7.6	46.7	50.8	82.0	58.6	441.3
Estimated Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Actual Evapotranspiration (m³/month)	993	1205	2264	4284	7842	11445	12895	10095	6280	3402	1785	1116	
Estimated Runoff (m³/month)	993 4075												63606
Estimated Infiltration (m³/month)		5472	6402	3015	870	0	0	0	2084	2267	3659	6532	34375
Estimated inflitration (m /month)	0	0	2744	4523	1305	0	0	0	3126	3400	5488	0	20586
Pasture and Shrubs													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	114.0	88.6	56.3	30.5	16.0	10.0	566.7
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-31.3	-5.7	46.7	50.8	82.0	58.6	444.8
Estimated Runoff (mm/month)	36.5	49.1	49.2	13.5	3.9	0.0	0.0	0.0	9.3	10.2	16.4	58.6	246.6
Estimated Infiltration (mm/month)	0.0	0.0	32.8	54.1	15.6	0.0	0.0	0.0	37.4	40.6	65.6	0.0	246.1
Estimated Actual Evapotranspiration (m ³ /month)	614	745	1400	2648	4848	7076	7862	6110	3883	2103	1103	690	39083
Estimated Runoff (m³/month)	2519	3383	3392	932	269	0	0	0	644	701	1131	4038	17010
Estimated Infiltration (m³/month)	0	0	2262	3729	1076	0	0	0	2577	2803	4524	0	16970
Mature Forest													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	117.2	92.6	56.3	30.5	16.0	10.0	573.9
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-34.5	-9.7	46.7	50.8	82.0	58.6	437.6
Estimated Runoff (mm/month)	36.5	49.1	49.2	13.5	3.9	0.0	0.0	0.0	9.3	10.2	16.4	58.6	246.6
Estimated Infiltration (mm/month)	0.0	0.0	32.8	54.1	15.6	0.0	0.0	0.0	37.4	40.6	65.6	0.0	246.1
Estimated Actual Evapotranspiration (m ³ /month)	19	23	42	80	147	214	245	194	118	64	33	21	1199
Estimated Runoff (m ³ /month)	76	103	103	28	8	0	0	0	20	21	34	122	515
Estimated Infiltration (m³/month)	0	0	69	113	33	0	0	0	78	85	137	0	514
Richmond Street (pervious)													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	112.3	86.8	56.3	30.5	16.0	10.0	563.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-29.6	-3.9	46.7	50.8	82.0	58.6	448.3
Estimated Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	7.8 11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Intitration (mm/month) Estimated Actual Evapotranspiration (m³/month)													
	21	25	48	90	165	240	263	203	132	71	37	23	1318
Estimated Runoff (m³/month)	85	115	134	63	18	0	0	0	44	48	77	137	721
Estimated Infiltration (m ³ /month)	0	0	58	95	27	0	0	0	66	71	115	0	432

IMPERVIOUS AREAS													
Estimated Actual Evapotranspiration (mm/month)	8.2	10.8	18.4	19.1	16.2	16.5	14.9	14.9	18.5	14.6	17.6	12.3	182.1
Surplus (mm/month)	37.2	49.1	83.9	86.9	73.6	75.2	67.8	68.0	84.5	66.7	80.4	56.2	829.4
Estimated Runoff (mm/month)	37.2	49.1	83.9	86.9	73.6	75.2	67.8	68.0	84.5	66.7	80.4	56.2	829.4
Estimated Infiltration (mm/month)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Estimated Actual Evapotranspiration (m ³ /month)	45	59	101	104	88	90	81	81	101	80	96	67	994
Estimated Runoff (m³/month)	203	268	458	474	402	411	370	371	461	364	439	307	4529
Estimated Infiltration (m³/month)	0	0	0	0	0	0	0	0	0	0	0	0	0
AREA A TOTALS													
Estimated Actual Evapotranspiration (m³/month)	1691	2056	3855	7206	13090	19066	21346	16684	10514	5721	3055	1917	106201
Estimated Runoff (m³/month)	6959	9341	10489	4514	1568	411	370	371	3252	3400	5340	11136	57150
Estimated Infiltration (m³/month)	0	0	5131	8460	2441	0	0	0	5846	6359	10265	0	38502

AREA B - Drains to Wetland C	Impervious Area (m²)	Pervious Area (m²)	Total Area (m²)	Soil Type	Soil Group		ling Capacity nm)	Infiltration Factor	T _{rain} (°C)	T _{snow} (°C)	Meltmax (%/100)		
Agricultural Land	0	10,005	71,714	Sandy Loam	В	1	50	0.6	3.3	-10.0	0.92		
Pasture and Shrubs	0	14,552		Sandy Loam	В	1	50	0.8					
Mature Forest		13,804		Sandy Loam	В	3	00	0.7					
Urban Lawn/Grassed Area		33,352		Sandy Loam	В	7	75	0.6					
Agricultural Land	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	Totals
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	115.6	90.5	56.3	30.5	16.0	10.0	570.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-32.9	-7.6	46.7	50.8	82.0	58.6	441.3
Initial Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Actual Evapotranspiration (m³/month)	89	108	203	384	703	1027	1157	905	563	305	160	100	5705
Estimated Runoff (m³/month)	365	491	574	270	78	0	0	0	187	203	328	586	3083
Estimated Infiltration (m³/month)	0	0	246	406	117	0	0	0	280	305	492	0	1846
Mature Forest													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	117.2	92.6	56.3	30.5	16.0	10.0	573.9
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-34.5	-9.7	46.7	50.8	82.0	58.6	437.6
Estimated Runoff (mm/month)	36.5	49.1	53.3	20.3	5.9	0.0	0.0	0.0	14.0	15.2	24.6	58.6	277.4
Estimated Infiltration (mm/month)	0.0	0.0	28.7	47.3	13.7	0.0	0.0	0.0	32.7	35.6	57.4	0.0	215.3
Estimated Actual Evapotranspiration (m³/month)	123	149	280	530	970	1416	1618	1278	777	421	221	138	7922
Estimated Runoff (m³/month)	504	677	736	280	81	0	0	0	193	210	340	808	3829
Estimated Infiltration (m³/month)	0	0	396	653	188	0	0	0	451	491	792	0	2972
Urban Lawn/Grassed Area													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	112.3	86.8	56.3	30.5	16.0	10.0	563.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-29.6	-3.9	46.7	50.8	82.0	58.6	448.3
Estimated Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Actual Evapotranspiration (m ³ /month)	297	360	677	1281	2345	3422	3745	2895	1878	1017	534	334	18784
Estimated Runoff (m³/month)	1218	1636	1914	902	260	0	0	0	623	678	1094	1953	10278
Estimated Infiltration (m³/month)	0	0	820	1352	390	0	0	0	935	1017	1641	0	6155
Pasture and Shrubs													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	115.6	90.5	56.3	30.5	16.0	10.0	570.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-32.9	-7.6	46.7	50.8	82.0	58.6	441.3
Estimated Runoff (mm/month)	36.5	49.1	49.2	13.5	3.9	0.0	0.0	0.0	9.3	10.2	16.4	58.6	246.6
Estimated Infiltration (mm/month)	0.0	0.0	32.8	54.1	15.6	0.0	0.0	0.0	37.4	40.6	65.6	0.0	246.1
Estimated Actual Evapotranspiration (m³/month)	130	157	295	559	1023	1493	1682	1317	819	444	233	146	8298
Estimated Runoff (m³/month)	532	714	716	197	57	0	0	0	136	148	239	852	3589
Estimated Infiltration (m³/month)	0	0	477	787	227	0	0	0	544	591	955	0	3581
AREA B TOTALS													
Estimated Actual Evapotranspiration (m³/month)	638	775	1456	2754	5041	7358	8202	6396	4037	2187	1147	717	40709
Estimated Runoff (m³/month)	2619	3518	3940	1649	476	0	0	0	1139	1239	2000	4199	20779
Estimated Infiltration (m³/month)	0	0	1940	3198	923	0	0	0	2210	2404	3880	0	14554
· · · ·													

AREA C - Drains to the Southeast (Ida Street)	Impervious Area (m²)	Pervious Area (m²)	Total Area (m²)	Soil Type	Soil Group		ling Capacity nm)	Infiltration Factor	T _{rain} (°C)	T _{snow} (°C)	Meltmax (%/100)		
Urban Lawn/Grassed Area	a 0	18,802	21,368	Sandy Loam	В	7	75	0.6	3.3	-10.0	0.92		
Mature Fores	t 0	2,566		Sandy Loam	В	3	00	0.7					
Urban Lawn/Grassed Area													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	112.3	86.8	56.3	30.5	16.0	10.0	563.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-29.6	-3.9	46.7	50.8	82.0	58.6	448.3
Estimated Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Actual Evapotranspiration (m ³ /month)	167	203	382	722	1322	1929	2111	1632	1059	573	301	188	10589
Estimated Runoff (m³/month)	687	922	1079	508	147	0	0	0	351	382	617	1101	5794
Estimated Infiltration (m³/month)	0	0	462	762	220	0	0	0	527	573	925	0	3470
Mature Forest													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	117.2	92.6	56.3	30.5	16.0	10.0	573.9
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-34.5	-9.7	46.7	50.8	82.0	58.6	437.6
Estimated Runoff (mm/month)	36.5	49.1	53.3	20.3	5.9	0.0	0.0	0.0	14.0	15.2	24.6	58.6	277.4
Estimated Infiltration (mm/month)	0.0	0.0	28.7	47.3	13.7	0.0	0.0	0.0	32.7	35.6	57.4	0.0	215.3
Estimated Actual Evapotranspiration (m ³ /month)	23	28	52	99	180	263	301	238	144	78	41	26	1472
Estimated Runoff (m³/month)	94	126	137	52	15	0	0	0	36	39	63	150	712
Estimated Infiltration (m³/month)	0	0	74	121	35	0	0	0	84	91	147	0	552
AREA C TOTALS													
Estimated Actual Evapotranspiration (m ³ /month)	190	231	434	821	1502	2192	2412	1870	1203	652	342	214	12062
Estimated Runoff (m³/month)	780	1048	1216	560	162	0	0	0	387	421	680	1251	6506
Estimated Infiltration (m³/month)	0	0	536	884	255	0	0	0	611	664	1072	0	4022
,,				- 55.			-						

AREA D - Drains to the Southwest (into the Sandusky Drain)	Impervious Area (m²)	Pervious Area (m²)	Total Area (m²)	Soil Type	Soil Group		ding Capacity nm)	Infiltration Factor	T _{rain} (°C)	T _{snow} (°C)	Meltmax (%/100)		
Agricultural Land	3473.9	143,421	169,611	Sandy Loam	В	1	150	0.6	3.3	-10.0	0.92		
Urban Lawn/Grassed Area	0	22,716		Sandy Loam	В		75	0.6					
Agricultural Land													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	115.6	90.5	56.3	30.5	16.0	10.0	570.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-32.9	-7.6	46.7	50.8	82.0	58.6	441.3
Estimated Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Actual Evapotranspiration (m ³ /month)	1276	1549	2911	5507	10083	14715	16580	12980	8075	4374	2295	1434	81779
Estimated Runoff (m³/month)	5239	7036	8231	3877	1119	0	0	0	2679	2914	4704	8398	44196
Estimated Infiltration (m³/month)	0	0	3527	5816	1678	0	0	0	4019	4371	7056	0	26467
Urban Lawn/Grassed Area													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	112.3	86.8	56.3	30.5	16.0	10.0	563.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-29.6	-3.9	46.7	50.8	82.0	58.6	448.3
Estimated Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Actual Evapotranspiration (m ³ /month)	202	245	461	872	1597	2331	2551	1972	1279	693	363	227	12793
Estimated Runoff (m³/month)	830	1114	1304	614	177	0	0	0	424	462	745	1330	7000
Estimated Infiltration (m³/month)	0	0	559	921	266	0	0	0	636	692	1118	0	4192
Impervious													
Estimated Actual Evapotranspiration (mm/month)	8.2	10.8	18.4	19.1	16.2	16.5	14.9	14.9	18.5	14.6	17.6	12.3	182.1
Surplus (mm/month)	37.2	49.1	83.9	86.9	73.6	75.2	67.8	68.0	84.5	66.7	80.4	56.2	829.4
Estimated Runoff (mm/month)	37.2	49.1	83.9	86.9	73.6	75.2	67.8	68.0	84.5	66.7	80.4	56.2	829.4
Estimated Infiltration (mm/month)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Estimated Actual Evapotranspiration (m ³ /month)	28	37	64	66	56	57	52	52	64	51	61	43	632
Estimated Runoff (m³/month)	129	171	291	302	256	261	236	236	293	232	279	195	2881
Estimated Infiltration (m³/month)	0	0	0	0	0	0	0	0	0	0	0	0	0
AREA D TOTALS													
Estimated Actual Evapotranspiration (m³/month)	1507	1832	3437	CAAC	11736	17103	19182	15003	9418	F110	2719	1704	05305
Estimated Actual Evapotranspiration (m /month) Estimated Runoff (m³/month)				6446						5118			95205
Estimated Runoff (m /month) Estimated Infiltration (m ³ /month)	6198	8321	9826	4793	1552	261	236	236	3397	3607	5728	9923	54078
Estimated minitration (in /month)	0	0	4086	6737	1944	0	0	0	4655	5064	8174	0	30660

TABLE K2 - POST-DEVELOPMENT WATER BALANCE CALCULATIONS

Drainage to the Sandusky Drain Blocks 201-208a	Impervious Area (m²)	Pervious Area (m²)	Total Area (m²)	Soil Type	Soil Group	Water Hold (m	ing Capacity m)	Infiltration Factor	T _{rain} (°C)	T _{snow} (°C)	Meltmax (%/100)		
Low-Medium Density													
(Urban Lawn) Open Space/Wetland A and Sandusky Drair		34,178	124,600	Sandy Loam	В	7	'5	0.6	3.3	-10.0	0.92		
(Pasture and Shrubs)	9128	36,512		Sand	Α	10	00	0.8					
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	Totals
Average Temperature (°C)	-5.6	-4.5	-0.1	6.8	13.1	18.3	20.8	19.7	15.5	9.2	3.4	-2.6	
Total Precipitation (mm/month)	74.2	65.5	71.5	83.4	89.8	91.7	82.7	82.9	103.0	81.3	98.0	87.5	1011.5
Precipitation as rain (mm/month)	24.5	27.1	53.2	83.4	89.8	91.7	82.7	82.9	103.0	81.3	98.0	48.7	
Precipitation as snow (mm/month)	49.7	38.4	18.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	38.8	
Potential Snow Melt (mm/month)	20.9	32.8	49.1	26.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.9	
Actual Snow Melt (mm/month)	20.9	32.8	49.1	22.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.9	
Snow Storage (mm/month)	47.7	53.4	22.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.9	
Louis Adadissas Danaitas (Unbara Laures)													
Low-Medium Density (Urban Lawn)	0.0	10.0	20.2	20.4	70.2	102.6	442.2	06.0	F.C. 2	20.5	46.0	10.0	F.C. 2
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	112.3	86.8	56.3	30.5	16.0	10.0	563.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-29.6	-3.9	46.7	50.8	82.0	58.6	448.3
Estimated Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Actual Evapotranspiration (m³/month)	304	369	694	1312	2403	3507	3838	2967	1924	1042	547	342	19249
Estimated Runoff (m³/month)	1248	1677	1961	924	267	0	0	0	638	694	1121	2001	10532
Estimated Infiltration (m³/month)	0	0	841	1386	400	0	0	0	958	1042	1682	0	6307
Open Space/Wetland A and Sandusky Drain (Pasture and Shrubs)													
•	8.0	10.8	20.3	38.4	70.3	102.6	114.0	00.6	FC 2	20 F	16.0	10.0	566.7
Estimated Actual Evapotranspiration (mm/month)	8.9						114.0	88.6	56.3	30.5	16.0	10.0	
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-31.3	-5.7	46.7	50.8	82.0	58.6	444.8
Estimated Runoff (mm/month)	36.5	49.1	49.2	13.5	3.9	0.0	0.0	0.0	9.3	10.2	16.4	58.6	246.6
Estimated Infiltration (mm/month)	0.0	0.0	32.8	54.1	15.6	0.0	0.0	0.0	37.4	40.6	65.6	0.0	246.1
Estimated Actual Evapotranspiration (m³/month)	325	394	741	1402	2567	3746	4162	3235	2056	1114	584	365	20691
Estimated Runoff (m³/month)	1334	1791	1796	494	142	0	0	0	341	371	599	2138	9005
Estimated Infiltration (m³/month)	0	0	1197	1974	570	0	0	0	1364	1484	2395	0	8984
Impervious Areas													
Estimated Actual Evapotranspiration (mm/month)	8.2	10.8	18.4	19.1	16.2	16.5	14.9	14.9	18.5	14.6	17.6	12.3	182.1
Surplus (mm/month)	37.2	49.1	83.9	86.9	73.6	75.2	67.8	68.0	84.5	66.7	80.4	56.2	829.4
Estimated Runoff (mm/month)	37.2	49.1	83.9	86.9	73.6	75.2	67.8	68.0	84.5	66.7	80.4	56.2	829.4
Estimated Infiltration (mm/month)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Estimated Actual Evapotranspiration (m³/month)	441	581	993	1028	871	890	803	804	999	789	951	665	9815
Estimated Runoff (m³/month)	2008	2646	4522	4685	3970	4054	3656	3665	4553	3594	4332	3030	44715
Estimated Infiltration (m³/month)	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL (Blocks 201-208a)													
Estimated Actual Evapotranspiration (m³/month)	1070	1344	2428	3743	5841	8143	8803	7006	4979	2945	2082	1372	49756
Estimated Runoff (m³/month)	4590	6114	8279	6102	4379	4054	3656	3665	5533	4659	6052	7170	64252

Drainage to Wetland C Blocks A210 and A212	Impervious Area (m²)	Pervious Area (m²)	Total Area (m²)	Soil Type	Soil Group		ing Capacity m)	Infiltration Factor	T _{rain} (°C)	T _{snow} (°C)	Meltmax (%/100)		
Low Densit (Urban Lawn	•	17,318	55,700	Sandy Loam	В	7	'5	0.6	3.3	-10.0	0.92		
Open Space (Pasture and Shrubs		20,432		Sandy Loam	В	1	50	0.8					
Low Density (Urban Lawn)													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	112.3	86.8	56.3	30.5	16.0	10.0	563.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-29.6	-3.9	46.7	50.8	82.0	58.6	448.3
Estimated Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Actual Evapotranspiration (m ³ /month)	154	187	352	665	1217	1777	1945	1503	975	528	277	173	9753
Estimated Runoff (m³/month)	633	850	994	468	135	0	0	0	324	352	568	1014	5337
Estimated Infiltration (m ³ /month)	0	0	426	702	203	0	0	0	485	528	852	0	3196
Open Space/Wetland C (Pasture and Shrubs)													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	115.6	90.5	56.3	30.5	16.0	10.0	570.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-32.9	-7.6	46.7	50.8	82.0	58.6	441.3
Estimated Runoff (mm/month)	36.5	49.1	49.2	13.5	3.9	0.0	0.0	0.0	9.3	10.2	16.4	58.6	246.6
Estimated Infiltration (mm/month)	0.0	0.0	32.8	54.1	15.6	0.0	0.0	0.0	37.4	40.6	65.6	0.0	246.1
Estimated Actual Evapotranspiration (m ³ /month)	182	221	415	785	1436	2096	2362	1849	1150	623	327	204	11650
Estimated Runoff (m ³ /month)	746	1002	1005	276	80	0	0	0	191	208	335	1196	5039
Estimated Infiltration (m ³ /month)	0	0	670	1105	319	0	0	0	763	830	1340	0	5027
Impervious Areas													
Estimated Actual Evapotranspiration (mm/month)	8.2	10.8	18.4	19.1	16.2	16.5	14.9	14.9	18.5	14.6	17.6	12.3	182.1
Surplus (mm/month)	37.2	49.1	83.9	86.9	73.6	75.2	67.8	68.0	84.5	66.7	80.4	56.2	829.4
Estimated Runoff (mm/month)	37.2	49.1	83.9	86.9	73.6	75.2	67.8	68.0	84.5	66.7	80.4	56.2	829.4
Estimated Infiltration (mm/month)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Estimated Actual Evapotranspiration (m³/month)	147	193	330	342	290	296	267	268	333	263	317	221	3268
Estimated Runoff (m³/month)	669	881	1506	1560	1322	1350	1217	1220	1516	1197	1442	1009	14888
Estimated Infiltration (m ³ /month)	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL (Blocks A210 and A212)													
Estimated Actual Evapotranspiration (m³/month)	483	601	1097	1792	2944	4169	4574	3620	2458	1414	921	599	24672
Estimated Runoff (m ³ /month)	2047	2733	3504	2304	1537	1350	1217	1220	2030	1756	2346	3219	25264
Estimated Infiltration (m³/month)	0	0	1096	1807	521	0	0	0	1249	1358	2192	0	8223

Drainage to the southeast (Ida Street) Block A211 Low Density	Impervious Area (m²)	Pervious Area (m²)	Total Area (m²)	Soil Type	Soil Group	Water Hold (m	ing Capacity m)	Infiltration Factor	T _{rain} (°C)	T _{snow} (°C)	Meltmax (%/100)		
(Urban Lawn)		2,430	5,400	Sandy Loam	В	7	'5	0.6	3.3	-10.0	0.92		
Low Density (Urban Lawn) Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	112.3	86.8	56.3	30.5	16.0	10.0	563.2
Surplus (mm/month) Estimated Runoff (mm/month) Estimated Infiltration (mm/month)	36.5 36.5 0.0	49.1 49.1 0.0	82.0 57.4 24.6	67.6 27.0 40.5	19.5 7.8 11.7	-10.9 0.0 0.0	-29.6 0.0 0.0	-3.9 0.0 0.0	46.7 18.7 28.0	50.8 20.3 30.5	82.0 32.8 49.2	58.6 58.6 0.0	448.3 308.2 184.5
Estimated Inflitration (Infl/Information (m³/month) Estimated Runoff (m³/month) Estimated Infiltration (m³/month)	22 89 0	26 119 0	49 139 60	93 66 99	171 19 28	249 0 0	273 0 0	211 0 0	137 45 68	74 49 74	39 80 120	24 142 0	1369 749 448
Impervious Areas Estimated Actual Evapotranspiration (mm/month) Surplus (mm/month) Estimated Runoff (mm/month) Estimated Infiltration (mm/month) Estimated Actual Evapotranspiration (m³/month) Estimated Runoff (m³/month) Estimated Infiltration (m³/month)	8.2 37.2 37.2 0.0 24 111 0	10.8 49.1 49.1 0.0 32 146 0	18.4 83.9 83.9 0.0 55 249	19.1 86.9 86.9 0.0 57 258 0	16.2 73.6 73.6 0.0 48 219	16.5 75.2 75.2 0.0 49 223 0	14.9 67.8 67.8 0.0 44 201 0	14.9 68.0 68.0 0.0 44 202 0	18.5 84.5 84.5 0.0 55 251 0	14.6 66.7 66.7 0.0 43 198 0	17.6 80.4 80.4 0.0 52 239 0	12.3 56.2 56.2 0.0 37 167 0	182.1 829.4 829.4 0.0 541 2463 0
TOTAL (Block A211) Estimated Actual Evapotranspiration (m³/month) Estimated Runoff (m³/month) Estimated Infiltration (m²/month)	46 199 0	58 265 0	104 389 60	150 324 99	219 238 28	298 223 0	317 201 0	255 202 0	192 296 68	118 247 74	91 318 120	61 309 0	1909 3212 448

Drainage to North SWMF	Impervious	Pervious	Total Area			Mateu Held	ing Capacity	Infiltration			Meltmax		
Block A209	Area (m²)	Area (m²)	(m ²)	Soil Type	Soil Group		m)	Factor	T _{rain} (°C)	T _{snow} (°C)	(%/100)		
Medium-Low Densit		/ u cu (/	··· /			•	•				(, ,		
(Urban Lawı	12,526	6,745	25,900	Sandy Loam	В	7	'5	0.6	3.3	-10.0	0.92		
SWM Facility (North	n) 3,713	2,917		Sandy Loam	В	7	'5	0.6					
Medium-Low Density (Urban Lawn)													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	112.3	86.8	56.3	30.5	16.0	10.0	563.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-29.6	-3.9	46.7	50.8	82.0	58.6	448.3
Estimated Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Actual Evapotranspiration (m ³ /month)	60	73	137	259	474	692	757	585	380	206	108	67	3799
Estimated Runoff (m³/month)	246	331	387	182	53	0	0	0	126	137	221	395	2078
Estimated Infiltration (m³/month)	0	0	166	273	79	0	0	0	189	206	332	0	1245
SWM Facility (North)													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	112.3	86.8	56.3	30.5	16.0	10.0	563.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-29.6	-3.9	46.7	50.8	82.0	58.6	448.3
Estimated Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Actual Evapotranspiration (m ³ /month)	26	32	59	112	205	299	328	253	164	89	47	29	1643
Estimated Runoff (m³/month)	107	143	167	79	23	0	0	0	54	59	96	171	899
Estimated Infiltration (m³/month)	0	0	72	118	34	0	0	0	82	89	144	0	538
Impervious Areas													
Estimated Actual Evapotranspiration (mm/month)	8.2	10.8	18.4	19.1	16.2	16.5	14.9	14.9	18.5	14.6	17.6	12.3	182.1
Surplus (mm/month)	37.2	49.1	83.9	86.9	73.6	75.2	67.8	68.0	84.5	66.7	80.4	56.2	829.4
Estimated Runoff (mm/month)	37.2	49.1	83.9	86.9	73.6	75.2	67.8	68.0	84.5	66.7	80.4	56.2	829.4
Estimated Infiltration (mm/month)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Estimated Actual Evapotranspiration (m ³ /month)	133	175	299	310	262	268	242	242	301	238	286	200	2957
Estimated Runoff (m³/month)	605	797	1362	1411	1196	1221	1101	1104	1371	1083	1305	913	13469
Estimated Infiltration (m³/month)	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL (Block A209)													
Estimated Actual Evapotranspiration (m³/month)	219	279	495	681	942	1259	1327	1081	845	532	441	297	8398
Estimated Runoff (m³/month)	958	1271	1916	1672	1271	1221	1101	1104	1552	1279	1622	1479	16446
Estimated Infiltration (m³/month)	0	0	238	392	113	0	0	0	271	294	475	0	1783

Drainage to South SWMF Block A208b	Impervious Area (m²)	Pervious Area (m²)	Total Area (m²)	Soil Type	Soil Group		ling Capacity nm)	Infiltration Factor	T _{rain} (°C)	T _{snow} (°C)	Meltmax (%/100)		
Low-Medium De	•	70.076				_		0.5		40.0	0.00		
(Urban Li	. ,	78,076	241,500	Sandy Loam	В		75	0.6	3.3	-10.0	0.92		
Park/Open S	, , ,	16,088		Sandy Loam	B B		75 75	0.6 0.6					
SWM Facility (Sc	outh) 13,121	10,309		Sandy Loam	В	•	/5	0.6					
Low-Medium Density (Urban Lawn)													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	112.3	86.8	56.3	30.5	16.0	10.0	563.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-29.6	-3.9	46.7	50.8	82.0	58.6	448.3
Estimated Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Actual Evapotranspiration (m ³ /month)	695	843	1585	2998	5489	8011	8768	6777	4396	2381	1249	781	43972
Estimated Runoff (m³/month)	2852	3830	4481	2111	609	0	0	0	1458	1587	2561	4572	24060
Estimated Infiltration (m ³ /month)	0	0	1920	3166	913	0	0	0	2188	2380	3841	0	14408
Park/Open Space													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	112.3	86.8	56.3	30.5	16.0	10.0	563.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-29.6	-3.9	46.7	50.8	82.0	58.6	448.3
Estimated Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Actual Evapotranspiration (m³/month)	143	174	327	618	1131	1651	1807	1396	906	491	257	161	9061
Estimated Runoff (m³/month)	588	789	923	435	125	0	0	0	301	327	528	942	4958
Estimated Infiltration (m³/month)	0	0	396	652	188	0	0	0	451	490	792	0	2969
SWM Facility (South)													
Estimated Actual Evapotranspiration (mm/month)	8.9	10.8	20.3	38.4	70.3	102.6	112.3	86.8	56.3	30.5	16.0	10.0	563.2
Surplus (mm/month)	36.5	49.1	82.0	67.6	19.5	-10.9	-29.6	-3.9	46.7	50.8	82.0	58.6	448.3
Estimated Runoff (mm/month)	36.5	49.1	57.4	27.0	7.8	0.0	0.0	0.0	18.7	20.3	32.8	58.6	308.2
Estimated Infiltration (mm/month)	0.0	0.0	24.6	40.5	11.7	0.0	0.0	0.0	28.0	30.5	49.2	0.0	184.5
Estimated Actual Evapotranspiration (m³/month)	92	111	209	396	725	1058	1158	895	580	314	165	103	5806
Estimated Runoff (m³/month)	377	506	592	279	80	0	0	0	193	209	338	604	3177
Estimated Infiltration (m³/month)	0	0	254	418	121	0	0	0	289	314	507	0	1902
Impervious Areas													
Estimated Actual Evapotranspiration (mm/month)	8.2	10.8	18.4	19.1	16.2	16.5	14.9	14.9	18.5	14.6	17.6	12.3	182.1
Surplus (mm/month)	8.2 37.2	49.1	83.9	86.9	73.6	75.2	67.8	68.0	84.5	66.7	80.4	56.2	829.4
Estimated Runoff (mm/month)	37.2	49.1	83.9	86.9	73.6	75.2 75.2	67.8	68.0	84.5	66.7	80.4	56.2	829.4
Estimated Infiltration (mm/month)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Estimated Actual Evapotranspiration (m³/month)	1120	1476	2523	2614	2215	2262	2040	2045	2540	2005	2417	1691	24948
Estimated Runoff (m³/month)	5104	6726	11493	11908	10090	10304	9292	9315	11573	9135	11011	7703	113654
Estimated Infiltration (m³/month)	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL (Block A208b)													
Estimated Actual Evapotranspiration (m³/month)	2050	2605	4644	6626	9559	12981	13772	11113	8422	5192	4089	2736	83788
Estimated Runoff (m³/month)	8920	11851	17488	14732	10905	10304	9292	9315	13525	11258	14438	13820	145848
Estimated Infiltration (m³/month)	0	0	2570	4236	1222	0	0	0	2927	3184	5140	0	19280

Project Name: Hunter Farm
Project Number: LON-21008138-A0
Client: Auburn Developments

TABLE K3 - WATER BALANCE SUMMARY

DRAINAGE TO THE SANDUSKY DRAIN:

AREA A TOTALS (Pre-Development)													
Estimated Actual Evapotranspiration (m³/month)	1691	2056	3855	7206	13090	19066	21346	16684	10514	5721	3055	1917	106201
Estimated Runoff (m³/month)	6959	9341	10489	4514	1568	411	370	371	3252	3400	5340	11136	57150
Estimated Infiltration (m³/month)	0	0	5131	8460	2441	0	0	0	5846	6359	10265	0	38502
AREA D TOTALS (Pre-Development)													
Estimated Actual Evapotranspiration (m3/month)	1507	1832	3437	6446	11736	17103	19182	15003	9418	5118	2719	1704	95205
Estimated Runoff (m3/month)	6198	8321	9826	4793	1552	261	236	236	3397	3607	5728	9923	54078
Estimated Infiltration (m3/month)	0	0	4086	6737	1944	0	0	0	4655	5064	8174	0	30660
TOTAL Blocks 201-208a (Post-Development)													
Estimated Actual Evapotranspiration (m3/month)	1070	1344	2428	3743	5841	8143	8803	7006	4979	2945	2082	1372	49756
Estimated Runoff (m3/month)	4590	6114	8279	6102	4379	4054	3656	3665	5533	4659	6052	7170	64252
Estimated Infiltration (m3/month)	0	0	2038	3360	969	0	0	0	2322	2526	4077	0	15291
TOTAL Block A208b (Post-Development)													
Estimated Actual Evapotranspiration (m³/month)	2050	2605	4644	6626	9559	12981	13772	11113	8422	5192	4089	2736	83788
Estimated Runoff (m³/month)	8920	11851	17488	14732	10905	10304	9292	9315	13525	11258	14438	13820	145848
Estimated Infiltration (m³/month)	0	0	2570	4236	1222	0	0	0	2927	3184	5140	0	19280
TOTAL Block A209 (Post-Development)													
Estimated Actual Evapotranspiration (m³/month)	219	279	495	681	942	1259	1327	1081	845	532	441	297	8398
Estimated Runoff (m³/month)	958	1271	1916	1672	1271	1221	1101	1104	1552	1279	1622	1479	16446
Estimated Infiltration (m³/month)	0	0	238	392	113	0	0	0	271	294	475	0	1783

Drainage to the Sandusky Drain (PRE VS. POST)	PRE	POST	VOL CHANGE	% Difference	Post with Mitigation	% Difference with Mitigation
Estimated Runoff (m3/year)	111,228	226,546	115,318	204%	135,928	122%
Estimated Infiltration (m3/year)	69,161	36,354	(32,807)	53%	55,384	80%
With Mitigation:						
Estimated Runoff	m³/year	135928				
Estimated Infiltration	m³/year	55384				
Runoff reduction		0.4				
Effectiveness		0.21				

Monthly Water Balance - Summary Tables

Project Name: Hunter Farm
Project Number: LON-21008138-A0
Client: Auburn Developments

DRAINAGE TO WETLAND C:

AREA B TOTALS (Pre- Development)													
Estimated Actual Evapotranspiration (m3/month)	638	775	1456	2754	5041	7358	8202	6396	4037	2187	1147	717	40709
Estimated Runoff (m3/month)	2619	3518	3940	1649	476	0	0	0	1139	1239	2000	4199	20779
Estimated Infiltration (m3/month)	0	0	1940	3198	923	0	0	0	2210	2404	3880	0	14554
TOTAL Blocks A210 and A212 (Post Development)													
Estimated Actual Evapotranspiration (m3/month)	483	601	1097	1792	2944	4169	4574	3620	2458	1414	921	599	24672
Estimated Runoff (m3/month)	2047	2733	3504	2304	1537	1350	1217	1220	2030	1756	2346	3219	25264
Estimated Infiltration (m3/month)	0	0	1096	1807	521	0	0	0	1249	1358	2192	0	8223

Drainage to Wetland C (PRE VS. POST)	PRE	POST	VOL CHANGE	% Difference	Post with Mitigation	% Difference with Mitigation
Estimated Runoff (m3/year)	20,779	25,264	4,485	122%	10,106	49%
Estimated Infiltration (m3/year)	14,554	8,223	(6,331)	57%	11,710	80%
With Mitigation:						
Estimated Runoff	m³/year	10106				
Estimated Infiltration	m³/year	11710				
Runoff reduction		0.6				
Effectiveness		0.23				

Monthly Water Balance - Summary Tables

Project Name: Hunter Farm
Project Number: LON-21008138-A0
Client: Auburn Developments

DRAINAGE TO THE SOUTHEAST:

AREA C TOTALS (Pre-Development)													
Estimated Actual Evapotranspiration (m3/month)	190	231	434	821	1502	2192	2412	1870	1203	652	342	214	12062
Estimated Runoff (m3/month)	780	1048	1216	560	162	0	0	0	387	421	680	1251	6506
Estimated Infiltration (m3/month)	0	0	536	884	255	0	0	0	611	664	1072	0	4022
TOTAL Block A211 (Post-Development)													
Estimated Actual Evapotranspiration (m³/month)	46	58	104	150	219	298	317	255	192	118	91	61	1909
Estimated Runoff (m³/month)	199	265	389	324	238	223	201	202	296	247	318	309	3212
Estimated Infiltration (m³/month)	0	0	60	99	28	0	0	0	68	74	120	0	448

Area C (PRE VS. POST)	PRE	POST	VOL CHANGE	% CHANGE	% of Pre- Dev Conditions
Estimated Runoff (m3/year)	6506	3212	-3294	-51%	49%
Estimated Infiltration (m3/year)	4022	448	-3574	-89%	11%

Drainage to the Southeast (Ida Street) (PRE VS. POST) ¹	PRE	POST	VOL CHANGE	% Difference	Post with Mitigation	% Difference with Mitigation
Estimated Runoff (m3/year)	6,506	3,212	(3,294)	49%	128	2%
Estimated Infiltration (m3/year)	4,022	448	(3,574)	11%	3,224	80%
With Mitigation:						
Estimated Runoff	m³/year	128				
Estimated Infiltration	m³/year	3224				
Runoff reduction		0.96				
Effectiveness		0.9				

Notes:

^{1.} Runoff and infiltration in the drainage area to the southeast (Ida Street) are significantly different due to a smaller drainage area in the post development.

Monthly Water Balance

Project Name: Hunter Farm
Project Number: LON-21008138-A0
Client: Auburn Developments

TABLE K4 - WATER BALANCE ASSUMPTIONS

- 1. AET occurs year round. Although the average temperature is below 0°C in the winter months, fluctuation above and below the freezing temperature of water occurs. The Thornthwaite model used assumes Train = 3.3°C and Tsnow = -10.0°C. When the average monthly temperature falls between these values, the monthly precipitation as rain and snow is derived by assuming a linear interpolation between these values, consistent with the methodology used in the accepted USGS reference material (McCabe, G.J., and Markstrom, S.L., 2007, A monthly water-balance model driven by a graphical use interface: U.S. Geological Survey Open-File report 2007-1088, 6 p.). Values of AET were taken from the Thornthwaite model and are considered to be representative of actual site conditions.
- 2. Monthly surplus is calculated by summing the precipitation as rain and actual snow melt, less estimated evapotranspiration.
- 3. Negative surplus values can be achieved during the summer months as water storage is the vadose zone of the soil is subject to evapotranspiration and depleted.
- 4. Infiltration is assumed not to occur between December and February as frost is typically present throughout those months.
- 5. Infiltration in March (Average temperature of -0.1°C), is assumed to occur during half of the month.
- No net infiltration or runoff occur in the summer as the rainfall accumulation is stored on site and infiltration was not assigned a negative value. See
 Assumption 3.
- 7. Evapotranspiration in impervious areas is the sum of precipitation as rain and snow melt multiplied by a factor of 0.18.
- 8. Under post development conditions, it is assumed that infiltration follows the new drainage pathways.
- 9. Forested areas west of Richmond Street and adjacent to Wetland C are assumed to be removed post-development.
- 10. Impervious areas are based on the Conceptual SWM Strategy the Site (Stantec, 2022)
- 11. Water holding capacity for SWM facilities is assumed to be 75mm.

				Direct	nt Duning a	ta Candu	du Dunin					SWM (wet)	SWM (dry)	Wetla	and C	Ida Chuanh
				Direc	ct Drainage	to Sandus	sky Drain					south	north	NE we	etland	Ida Street
Block	A201	A202	A203	A204a	A204b	A205a	A205b	A206a	A206b	A207	A208a	A208b	A209	A210	A212	A211
Total Area	1.61	2.96	1.75	0.99	0.68	0.89	0.78	0.57	0.18	0.45	1.6	24.15	2.59	4.31	1.26	0.54
Low Density			1.75							0.45	0.37	10.79	0.155		1.26	0.54
Medium Density	1.61					0.89					0.91	5.006	1.462			
High Density																
Park		2.96						0.57	0.18			0.404		1.276		
Open Space				0.99	0.68						0.17	1.607		2.554		
Street							0.78				0.15	4	0.31	0.48		
SWM Facility											•	2.343	0.663		·	
Impervious Areas	1.05	0.59	0.96	0.20	0.14	0.58	0.55	0.11	0.04	0.25	0.93	13.70	1.62	1.10	0.69	0.30
Pervious Areas	0.56	2.37	0.79	0.79	0.54	0.31	0.23	0.46	0.14	0.20	0.67	10.45	0.97	3.21	0.57	0.24

Post-Development Conditions:

Sub-Catchment	Area (ha)	TIMP	AxC	XIMP	AxC	CN	AxCN	IA	AxIA	Description
201	1.61	0.65	1.047	0.55	0.886	61	98.210	5	8.050	MD on the north of the west of Richmond part from the site.
202	2.96	0.20	0.591	0.05	0.148	75	221.700	5	14.780	Park block on west of Richmond
203	1.76	0.55	0.968	0.45	0.792	61	107.360	5	8.800	SF blocks on the south of the west of Richmond part from the site
204a	0.99	0.20	0.198	0.20	0.198	75	74.250	5	4.950	Sandusky drain on west of Richmond
204b	0.68	0.20	0.136	0.20	0.136	75	51.000	5	3.400	Sandusky drain on east of Richmond
205a	0.89	0.65	0.579	0.55	0.490	61	54.290	5	4.450	MD between Sandusky drain and Richmond
205b	0.78	0.70	0.546	0.60	0.468	61	47.580	5	3.900	Richmond street
206a	0.59	0.20	0.118	0.05	0.030	75	44.250	5	2.950	West park block on south boundary of west of Richmond
206b	0.18	0.20	0.036	0.05	0.009	75	13.500	5	0.900	East park block on the south boundary of west of Richmond
207	0.45	0.65	0.293	0.55	0.248	61	27.450	5	2.250	MD between Sandusky drain and Marion Street.
208a (MD)	0.91	0.65	0.592	0.55	0.501	61	55.567	5	4.555	-
208a (SF)	0.37	0.55	0.204	0.45	0.167	61	22.626	5	1.855	-
208a (Roads)	0.15	0.70	0.105	0.60	0.090	61	9.150	5	0.750	-
208a (OS)	0.17	0.20	0.034	0.05	0.009	61	10.412	5	0.853	-
208a (Weighted)	1.60	0.58	0.935	0.48	0.766	61	97.754	5	8.013	Proposed uncontrolled toward the Drain
208b (MD)	4.21	0.65	2.737	0.55	2.316	61	256.810	5	21.050	
208b (SF)	12.00	0.55	6.599	0.45	5.399	61	731.840	5	59.987	-
208b (Roads)	4.00	0.70	2.798	0.60	2.399	61	243.849	5	19.988	-
208b (OS)	3.95	0.20	0.790	0.05	0.198	61	240.950	5	19.750	-
208b (Weighted)	24.15	0.54	12.92	0.43	10.31	61	1473.45	5	120.77	Proposed site toward south SWMF toward Sandusky drain
209 (MD)	1.56	0.65	1.017	0.55	0.860	61	95.404	5	7.820	-
209 (SF)	0.25	0.55	0.138	0.45	0.113	61	15.250	5	1.250	-
209 (Roads)	0.31	0.70	0.217	0.60	0.186	61	18.910	5	1.550	-
209 (OS)	0.49	0.20	0.098	0.05	0.025	61	29.890	5	2.450	-
209 (Weighted)	2.61	0.56	1.47	0.45	1.18	61	159.45	5	13.07	Proposed site toward north SWMF toward Sandusky drain
210 (OS)	2.20	0.20	0.440	0.05	0.110	75	164.850	10	21.980	Undeveloped open space area
210 (Roads)	0.48	0.70	0.336	0.60	0.288	75	36.000	5	2.400	-
210 (Parks)	1.58	0.20	0.315	0.05	0.079	75	118.200	5	7.880	-
210 (Weighted)	4.25	0.26	1.09	0.11	0.48	75	319.05	8	32.26	Proposed parks on northeast toward the north
211	0.54	0.55	0.297	0.45	0.243	61	32.940	5	2.700	SF blocks on the southeast toward IDA Street
212	1.26	0.55	0.693	0.45	0.567	75	94.500	5	6.300	SF blocks on the northeast
Total	45.31	0.48	21.92	0.37	16.95	64	2916.74	5	237.55	-
Sub-Catchment	Area (ha)	С	AxC	CN	AxC	IA	AxIA			Description
EXT-1	19.09	0.20	3.818	75	1431.750	5	95.450			th runoff toward Sandusky Drain
EXT-2	479.35	0.20	95.870	75	35951.250	5	2396.750			noff toward Sandusky Drain Via Hunter Branch
EXT-3	186.58	0.20	37.316	75	13993.500	5	932.900			h runoff toward Sandusky Drain through site
EXT-4	0.91	0.20	0.182	75	68.250	5	4.550	External on	southeast co	rner of site through IDA toward Sandusky Drain
Total	685.93		137.19		51444.75		3429.65			
	•							-		

Airport Method

3.26(1.1-C)L^{0.5} S^{0.33} Tc=

Tc = Time of Concentration (min)

C = Runoff Coefficient

L = Catchment Length (m) S = Catchment Slope (%)

730.70

730.70

Appendix L – Well Survey Questionnaire Responses

(please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to **EXP Services Inc**. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	Ril Ruto	10 0				
Address	DE CLAR	1 Rosemary Rash	Mussen.			
Phone	519 268 11	1 31. DOKCHESTER				
Existing well	☐ No wells present at the address noted above					
	Yes – please re	fer to requested details below				
Location of Well	Shallow we	ell located in from	0.1			
(Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)	bedroom win Well used to water to how area . House I 1975 a I believe was existing	provide HENGE ses withe				
	- / 22	Date Drilled				
Depth of Well	8 !!		77			
Depth of Well Type of Well: Dug/Bored or Drilled)	8 !!	(estimate, if not known) Static Water Level	(17			

following a	not to address	provide s:	information	regarding	onsite	well	(s)	to	EXP	Services	Inc.	at	the
						-	_	_0					

Owner's Signature

Date

Please return to:

Heather Jaggard Exp Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5

Fax: 519-963-1152

(please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to **EXP Services Inc.** regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	Penelope (Cloutier	
Address	272 Clar	a St Dorches	ster ONT
Phone	(519) 860-8	131	JONE
Existing well	No wells present at th		
	☐ Yes – please refer to	requested details below	
Location of Well			=
(Describe location, in			
reference to existing			
buildings or structures. If preferred, you can			
provide a sketch on the back of this page)			
back of this page)			-
Depth of Well		Date Drilled (estimate, if not known)	
Type of Well:			
(Dug/Bored or Drilled)		Static Water Level	
Do you have	□No	1	
Municipal water?	Yes – if yes, is the we	ell still being used?	
	de Well Information vide information regarding	onsite well (s) to EXP	Services Inc. at the
	•		•
(1)	_	//) - 0 =
Kerry Clo	ula	May 15,	6022
Owner's Signature		Date ()	
Please return to:			

Heather Jaggard Exp Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5 Fax: 519-963-1152

(please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to EXP Services Inc. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	Carlos & Sarah Almeida
Address	289 Clara St., Dorchester, ON
Phone	
Existing well	☑ No wells present at the address noted above
	☐ Yes – please refer to requested details below
Location of Well	
(Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)	
Depth of Well	Date Drilled (estimate, if not known)
Type of Well: (Dug/Bored or Drilled)	Static Water Level
Do you have Municipal water?	□ No □Yes – if yes, is the well still being used? ⋈/⁄

Declin	a to Pro	avide	Well	Inform	nation
Decilli	e lu ri	JVIUE	A A CII	,,,,	Iauvii

I choose	not to	provide	information	regarding	onsite	well (s) to	EXP	Services	Inc.	at	the
following a	addres	s:										

Sarah almada Owner's Signature

Date

Please return to:

Heather Jaggard Exp Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5 Fax: 519-963-1152

(please select the appropriate box)

	Agree	to	Provide	Well	Information
--	--------------	----	----------------	------	-------------

I hereby disclose the following information to **EXP Services Inc**. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

			201
Name	S. DAYLE GL	our D	
Address		HERINE ST-	DORCHESTER
Phone	519-268-3		TO THE GREET
Existing well	No wells present at the		
	☐ Yes – please refer to r	equested details below	D = V * E
(Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)			
Depth of Well		Date Drilled (estimate, if not known)	
Type of Well: (Dug/Bored or Drilled)		Static Water Level	
Do you have Municipal water?	☐ No ☐ Yes – if yes, is the wel	I still being used?	
following address:			Services Inc. at the
5 .			

Please return to:

Heather Jaggard Exp Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5 **Fax:** 519-963-1152

(please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to **EXP Services Inc.** regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Address Phone Existing well	1519 268	verine 8t. Dorch 3 2668	uster
	1519 268	3 2668	2010
Existing well			
		t at the address noted above	
		er to requested details below	
(Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)			
Depth of Well		Date Drilled (estimate, if not known)	
Type of Well: Dug/Bored or Drilled)		Static Water Level	
A	□ No Ves – if yes, is th	ne well still being used?	•
Dug/Bored or Drilled) Do you have flunicipal water? Decline to Provide	© Yes – if yes, is the Well Information	Static Water Level ne well still being used? rding onsite well (s) to EXP	Services Inc. a

Please return to:

Heather Jaggard Exp Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5 Fax: 519-963-1152

WELL SURVEY QUESTIONNAIRE (please select the appropriate box)

☐ Agree to Provide Well Information

I hereby disclose the following information to EXP Services Inc. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	Chesher	- John + N	ancy
Address	4611 (nation Str	eeb
Phone	519-2	68-1036	
Existing well	☐ No wells present at	the address noted above o requested details below	
(Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)	3 feet t	from bach ducking	door
Depth of Well	6 feet?	Date Drilled (estimate, if not known)	7 60+ years
Type of Well: (Dug/Bored or Drilled)	7	Static Water Level	36 fet - con be
Do you have Municipal water?	☑ No ☐ Yes – if yes, is the	well still being upod?	Jenopo

☐ Decline to Provide Well Information

I choose not to provide information regarding onsite well (s) to EXP Services Inc. at the following address:

Owner's Signature

Please return to:

Heather Jaggard Exp Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5 Fax: 519-963-1152

E-mail: Heather.Jaggard@exp.com (please include WELL SURVEY in subject line).

May 7 2022

WELL SURVEY QUESTIONNAIRE (please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to EXP Services Inc. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may

Vame					1
vaine	911	JART	QUIC		
ddress	11/11/11	MINI	MIKS		
hone		MARION 202 0345	31	DORCHESTE	R
xisting well	☑ No wells	present at the add	Iress noted above	ve	H
ocation of Well	i res - pie	ease refer to reque	sted details belo	w	
Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)					
Depth of Well			Drilled nate, if not known)		
Type of Well: Dug/Bored or Drilled)		Stat	ic Water Level	,	
o you have	□No				
lunicipal water?	0 W/2591	ves is the well still I	peing used?	ERE 15 NO WELL	
Decline to Provide thoose not to provide lowing address:	le Well Inform	nation on regarding onsite	17 WAS	FILLED IN IN (P Services Inc. at the	19
1	1				

Please return to:

Owner's Signature

Heather Jaggard Exp Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5

Fax: 519-963-1152

E-mail: Heather.Jaggard@exp.com (please include WELL SURVEY in subject line).

27 Apr 2022

(please select the appropriate box)

Agree to Provide Well Information

I hereby disclose the following information to **EXP Services Inc**. regarding the well on the subject property (noted below) and in doing so, acknowledge that the monitoring results may be available to the public on request.

Name	JAMES Va	nder Brandt.	
Address	4673 Ma	rion Street Do	rchester ONT.
Phone	519-281-23		101000
Existing well	☐ No wells present at t	the address noted above prequested details below	
(Describe location, in reference to existing buildings or structures. If preferred, you can provide a sketch on the back of this page)	Inside house	3	
Depth of Well	85 FEET	Date Drilled (estimate, if not known)	1964?
Type of Well: (Dug/Bored or Drilled)	ORICED	Static Water Level	62 FEET
Do you have Municipal water?	□ No ☑ Yes – if yes, is the w	ell still being used?	10

П	Decline	to Dro	wida W	Vall I	forma	4inm
1 1	Decime	IO Pro	VIOR V	veli ir	ntorma	ซเกท

I choose not to provide information regarding onsite well (s) to EXP Services Inc. at the following address:

Owner's Signature

Please return to:

Heather Jaggard Exp Services Inc. 15701 Robin's Hill Rd. London ON N5V 0A5

Fax: 519-963-1152

Hagit Blumenthal

Subject: FW: Hunter Farm - LON-21008138

Private Well Survey

Completed on April 26, 2022. A total of 87 survey forms were delivered. The neighbourhoods / properties they were delivered to are shown here: \\exp\\data\LON\LON-21008138-A0\\50 Input\\Hydrogeological Work\\door-to-door survey\LON-21008138 Hunter Farm Well Survey Neighbourhoods.jpg

Other Notes:

- A water shutoff valve was observed in the front lawn of the property located at 4673 Marion Street.
- At least one well was observed in the front lawn of a property located on the east side of Ron Allen Drive.
- Spoke to the homeowner of 4984 Marion Street. They use a private well that is approx. 65 ft deep, located in the front of the property. The well was observed during the visit. Water was dripping/flowing out the top of the well (was capped but water was seeping out of the top).
- Spoke to the owner of My Pet's Spot, located at 3826 Catherine Street. Property is on a private well took picture (see \\exp\data\LON\LON-21008138-A0\50 Input\Hydrogeological Work\door-to-door survey\3826 Catherine Street Well (My Pets Spot).jpg). Depth of well is unknown, installed approx. 1954. The owner stated roughly 26 properties in Dorchester are on their own private well, the rest are on Town water. She knows this because the owners of the 26 properties fought with the Town to keep their private wells and not be transferred to Town water. Not sure if there is a way to confirm with the Town what these 26 properties are?
- A survey could not be delivered to 4216 Catherine Street (salon). The person I spoke with said they would not
 be able to deliver the form to the property owner. They stated they do not believe they use a private well. The
 neighbouring property to the east (4218 Catherine Street Flowershop) also stated they didn't think they were
 on a well but they did take a copy of the form to provide to the property owner. These are commercial
 properties and the businesses rent from the owners.

Kassandra Wallace

EXP | Intermediate Hydrogeologist

t: +1.226.616.0742 | m: +1.519.573.9210 | e: <u>kassandra.wallace@exp.com</u>

<u>exp.com</u> | <u>legal disclaimer</u> keep it green, read from the screen **Appendix M – Dewatering Calculations**

APPENDIX M: Short-Term Flow Rate

Table M-1: Basement

Parameters	Symbols	Unit	Value		
Geological Formation	-	-	Glacial Deposit		
Ground Elevation	-	mASL	256.00		
Highest Groundwater Elevation	-	mASL	255.45		
Lowest Basement Bottom Elevation	-	mASL	253.50		
Base of the Water-Bearing Zone	-	mASL	250.00		
Height of Static Water Table Above the Base of the Water-Bearing Zone	Н	m	5.45		
Dewatering Target Elevation	-	mASL	253.00		
Height of Target Water Level Above the Base of Water-Bearing Zone	h _w	m	3.00		
Hydraulic Conductivity	К	m/s	8.2E-04		
Length of Excavation	-	m	20.00		
Width of Excavation	-	m	20.00		
Equivalent Radius (equivalent perimeter)	r _e	m	12.73		
Method to Calculate Radius of Influence	-	-	Cooper-Jacob		
Time (30 days)	t	S	2592000		
Specific Yield	Sy		0.30		
Cooper-Jacob's Radius of Influence from Sides of Excavation	Rcj	m	294.75		
Radius of Influence	Ro	m	307.48		
Dewatering Flow Rate (unconfined radial flow component)	Q	m³/day	1447.07		
Factor of Safety	fs	-	2.00		
Dewatering Flow Rate (multiplied by factor of safety)	Q.fs	m³/day	2894		
Precipitation Event	-	mm/day	0		
Volume from Precipitation	-	m³/day	0		
Dewatering Flow Rate Without Safety Factor (including stormwater collection)	-	m³/day	1447		
Dewatering Flow Rate With Safety Factor (including stormwater collection)	-	m³/day	2894		

Notes:

mASL - meters above sea level

Analytical Solution for Estimating Radial Flow from an Unconfined Aquifer to a Fully-Penetrating Excavation

$$Q_{w} = \frac{\pi K(H^{2} - h^{2})}{Ln\left[\frac{R_{o}}{r_{e}}\right]} \qquad r_{e} = \frac{a+b}{\pi} \qquad R_{o} = R_{cj} + r_{e} \qquad R_{cj} = \sqrt{2.25KDt/S}$$

(Based on the Dupuit-Forcheimer Equation)

Where:

 Q_w = Flow rate per unit length of excavation (m³/s)

K = Hydraulic conductivity (m/s)

H = Height of static water table above base of water-bearing zone (m)

h_w = Height of target water level above the base of water-bearing zone (m)

Rcj=Cooper Jacob Radius of Influence (m)

R_o=Radius of influence (m)

re=Equivalent perimeter (m)

Project No. LON-21008138-A0

Modified DUPUIT Equation: unconfined flow into a long excavation. No flow from the bottom!

Table M-2: Servicing Dewatering Calculations

Ĭ	Section	GW level	GW Target	Aquifer Bottom	X	W	Α	K	s	r _e	R_o	L=R0/2	H_{sat}	\mathbf{Q}_{ends}	Q _{ends}	Q _{trench}	Q _{trench}	Q _{total}	\mathbf{Q}_{total}
ı		m AMSL	m AMSL	m AMSL	m	m	m ²	m/s	m	m	m	m	m	m³/s	L/d	m³/s	L/d	m³/s	L/d
	X-X'	255.45	252.50	250.00	50	5	250	8.2E-04	2.95	17.51	270.93	135.47	5.45	0.022056	1,905,603	0.007098	613,276	0.029154	2,518,878

$$Q = \frac{\pi K(H^2 - h^2)}{Ln\left[\frac{R_o}{r_e}\right]} + 2\left[\frac{xK(H^2 - h^2)}{2L}\right]$$

A = dewatered area (m²)

Q = construction dewatering rate (m³/sec)

K = saturated and horizontal hydraulic conductivity (m/s)

 $H = hydraulic head beyond R_0 (m)$

h = hydraulic head within A (m)

s = drawdown (=H-h)

r_e = equivalent well radius of A (m)

 R_0 = radius of influence of construction dewatering/pumping from equivalent well center (m)

x = length of the trench (m)

w = width (m)

L = distance of influence of construction dewatering/pumping from equivalent well center (m)

 $\pi = Pi(1)$

Appendix N – Limitations and Use of Report

LIMITATIONS AND USE OF REPORT

BASIS OF REPORT

This report ("Report") is based on site conditions known or inferred by the geotechnical investigation undertaken as of the date of the Report. Should changes occur which potentially impact the geotechnical condition of the site, or if construction is implemented more than one year following the date of the Report, the recommendations of EXP may require re-evaluation.

The Report is provided solely for the guidance of design engineers and on the assumption that the design will be in accordance with applicable codes and standards. Any changes in the design features which potentially impact the geotechnical analyses or issues concerning the geotechnical aspects of applicable codes and standards will necessitate a review of the design by EXP. Additional field work and reporting may also be required.

Where applicable, recommended field services are the minimum necessary to ascertain that construction is being carried out in general conformity with building code guidelines, generally accepted practices and EXP's recommendations. Any reduction in the level of services recommended will result in EXP providing qualified opinions regarding the adequacy of the work. EXP can assist design professionals or contractors retained by the Client to review applicable plans, drawings, and specifications as they relate to the Report or to conduct field reviews during construction.

Contractors contemplating work on the site are responsible for conducting an independent investigation and interpretation of the test pit results contained in the Report. The number of test pits necessary to determine the localized underground conditions as they impact construction costs, techniques, sequencing, equipment and scheduling may be greater than those carried out for the purpose of the Report.

Classification and identification of soils, rocks, geological units, contaminant materials, building envelopment assessments, and engineering estimates are based on investigations performed in accordance with the standard of care set out below and require the exercise of judgment. As a result, even comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel may fail to locate some conditions. All investigations or building envelope descriptions involve an inherent risk that some conditions will not be detected. All documents or records summarizing investigations are based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated. Some conditions are subject to change over time. The Report presents the conditions at the sampled points at the time of sampling. Where special concerns exist, or the Client has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

RELIANCE ON INFORMATION PROVIDED

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to EXP.

STANDARD OF CARE

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by its client ("Client"), communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

USE OF REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorized use of the Report.

REPORT FORMAT

Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP have utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.

Legal Notification

This report was prepared by EXP Services Inc. for the exclusive use of **Auburn Developments** and may not be reproduced in whole or in part, or used or relied upon in whole or in part by any party other than **Auburn Developments** for any purpose whatsoever without the express permission of **Auburn Developments** in writing.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

